PUF-IPA: A PUF-based Identity Preserving
Protocol for Internet of Things Authentication

Mahmood Azhar Qureshi* and Arslan Munir'
Department of Computer Science, Kansas State University
Email: *mahmood102@ksu.edu, and Tamunir@ksu.edu

Abstract—Physically unclonable functions (PUFs) can be used
for Internet of things (IoT) based identification, authentication
and authorization. However, PUF based authentication systems
are vulnerable to various attacks including, but not limited to,
replay and modeling attacks. In this paper, we propose PUF-
IPA, a PUF-based identity-preserving protocol for IoT device
authentication. The PUF-IPA provides stronger resilience against
security attacks as compared to previous approaches assuming
a threat model where adversary can conduct not only passive or
active attacks during authentication phase but can also breach
the server storing PUF credentials. The proposed PUF-IPA is
robust against brute force, replay, and modeling attacks. In
PUF-IPA, no partial/full challenge-response pairs (CRPs) or soft
models associated to a PUF within a device are stored, generated,
transmitted, or received by the server during authentication
events. The PUF-IPA improves the PUF response accuracy by
enabling self-checking. Results reveal that the PUF-IPA improves
the PUF response accuracy from 89% to 98% without the use
of hardware-expensive error correction codes.

Index Terms—Lightweight authentication, PUFs, identity-
preserving

I. INTRODUCTION

Internet of things (IoT) paradigm connects a wide variety
of heterogeneous devices to help realize an increasing number
of novel applications in different domains including medical,
defense, transportation, agriculture, and automation. Many of
the IoT applications require IoT devices to be authenticated
before joining the network as well as during operation on a
regular basis to verify the legitimacy of the devices. Since
many of the IoT devices have stringent resource constraints,
certificate-based authentication does not provide a feasible and
scalable solution for all IoT applications. Consequently, there
is a need to investigate other methods for IoT authentication.

Physically unclonable functions (PUFs) [1] exploit the phys-
ical randomness associated with manufacturing variations in
a device. These variations can be utilized for enhancing the
device’s security as they are not reproducible. A PUF, because
of its uniqueness, can be considered a private fingerprint
associated to a particular device, and thus can be used for
IoT device authentication. However, this fingerprint and the
identity of a device needs to be kept private.

Even though PUF-based authentication methods provide a
very efficient solution for authentication of resource constraint
IoT devices, they are not completely foolproof. Riithrmair
et al. [2] have demonstrated that advance machine learning
(ML)-based modeling techniques can be used to break the
unpredictability and therefore, the security of strong PUFs
(SPUFs), previously considered secure. Similarly, Zhang et

al. [3] have shown that given a small number of challenge-
response pairs (CRPs) of a 64x64 Arbiter PUF [4], an ad-
versary can easily and efficiently build a software model for
the device’s PUF with a prediction accuracy of 99.9%. These
modeling attacks can reproduce the behavior of the responses
of the actual device and make it susceptible to attacks. Only
tapping the various communication links between the device
and the server, an adversary can still generate an accurate
prediction model based on the CRP exposure.

To thwart model building attacks, Controlled PUFs (CPUFs)
are introduced in [5]. These PUFs prevent model-building
attacks by encapsulating the device’s PUF within a control
logic. [6], [7] build a control logic which limits the exposure
of the CRPs for the adversary. [3] obfuscates the CRPs in
such a way that even if the adversary collects a number of
CRPs, no efficient model can be built since the original CRP
relationship is only known to the device and the server.

Preserving the identity and privacy of the PUF, and thus de-
vice as PUF is fingerprint of the device, during authentication
is challenging. In the prior works [8], [6], [7], [3], the authors
have assumed that the server is secure and that the identity
of the devices in the system are known to the server. This
identity is the parameters of the PUFs in the devices including
original, unaltered CRPs and/or their software models. For
these approaches, if the server gets breached, the adversary
can easily get hold of all the parameters of PUFs in the devices
therefore breaching the security of the entire network. Hence,
developing an identity-preserving authentication mechanism
is challenging and this work aims to address this research
problem.

In this paper, we propose PUF-IPA that uses PUFs to pro-
vide identity-preserving authentication. The PUF-IPA stores
obscured, uncorrelated information about the device’s PUF
in the server. The server authenticates the devices by using
this information without having the original CRP data. Thus,
even if the server gets breached and the data is acquired,
the adversary will not be able to model the devices since
the information about the PUF CRPs is only know to the
device. Also, in [8], [6], [7], [3], it is assumed that the
communication channel between the server and it’s database
is secure and an adversary cannot monitor the traffic on it. The
proposed scheme considers this channel to be insecure with the
adversary having the capability to monitor it. Results indicate
that even after opening the channel for attacks, the proposed
protocol still remains secure. This provides huge cost benefits
as an [oT network can have a huge number of devices and

Fig. 1. Past approaches (a) Controlled PUF structure [5] (b) PUF-FSM [7]
(c) Slender PUF [8] (d) DMOS-PUF structure [3]

storing the entire CRPs for all these devices’ PUF in a secure
server memory can have a huge cost. Our main contributions
are as follows.

o We propose PUF-IPA that provides identity-preserving
authentication for IoT devices employing bit shuffling.
In PUF-IPA, the device is authenticated without storing
CRPs or a model in the server’s memory and the server
authenticates the device based on obscured, uncorre-
lated information. The challenges are generated on-the-fly
within the device by a shuffling algorithm. The security
of the devices remains intact in the event of server breach.

e In PUF-IPA, the access to the PUF in an IoT device is
controlled. A challenge is not issued and thus no response
is generated without the application of a correct input
stream to the device. This effectively locks out the device
from unauthorized access. This protocol is the first that
has the capability to lock out the device without even
invoking the PUF within, and thus completely inhibits
any model-building capability on the underlying PUF.

o The PUF-IPA provides an efficient and lightweight mech-
anism for IoT device authentication. Results verify that
PUF-IPA has less area overhead as compared to other
PUF-based authentication mechanisms while providing
additional security advantages.

II. RELATED WORK

Figure 1 shows the device side of the various PUF-based
authentication schemes proposed in the past. Gassend et al.[5]
hashes the input challenge as well as the output response
but requires hardware-expensive error correction logic for
stabilizing the noisy PUF responses. [5] also also transmits
helper data to the device to be used by ECC. This exposure
of helper data exposes the PUF to attacks focusing on noise
side-channel information [9].

Yu et al. [6] upper bounds the limited number of CRPs to
an adversary. In this case, only the server can validate the

access to the new CRPs. [6] also introduces a device side
nonce to prevent reliability-based attacks [9]. Gao et al. [7]
have presented a finite state machine (FSM) based locking
scheme at the output of the PUF circuit. A challenge is applied
to the device and after evaluation, the responses from the PUF
are fed to an FSM which traverses a given set of states till it
reaches the final state. Application of a wrong challenge by
an adversary will generate a response from the PUF which
prevents the FSM from reaching the final state.

Slender PUF [8] uses neither an error-correction logic nor
any cryptographic hashing but provides an open interface. An
adversary can acquire information about CRPs as long as
the device’s interface access is maintained. [8] also does not
provide mutual authentication. Zhang et al. [3] have proposed
a dynamic multi key obfuscation structure (CMOS) which
uses stable responses from a device’s PUF as obfuscation
keys. A particular number of stable challenges are stored in a
non-volatile memory (NVM) inside the device. Responses are
generated using these challenges and stored in register banks
within the device as obfuscation keys. During authentication,
two keys are selected randomly from the register bank by a
true random number generator (TRNG). First key is XOR’ed
with the input challenge and the second key is XOR’ed with
the output response in the device. The obfuscated response is
then sent back to the server for authentication.

All of the above approaches rely on the assumption that
the server database cannot be breached. In all of the above
approaches, the server stores full/partial CRPs or modeling
parameters in a secure memory. Hence, a breach on the server-
side can result in the compromise of entire network of devices.

III. PROPOSED SCHEME

We treat the server as a breachable entity and thus attempt to
protect the devices’ privacy even in an event of breach. The
only thing the server need to securely store is one encryp-
tion key. The PUF-IPA forces the verifying authority (i.e., a
server/verifier) to go through a message/stream authentication
block before the device’s PUF can be evaluated. Figure 2 (a)
and (b) depict the server-side and the device-side design of
our protocol. The stream authentication (SA) block in the
device is responsible for verifying the input to the PUF. The
SA block serves two main purposes:

1) Preserves the privacy of the device by generating on-
the-fly challenges within the device without explicitly
storing any CRPs or a model in the server’s database.

2) Renders the device inaccessible in case an adversary
masquerades as a legitimate verifier and issues random
challenges to the device in order to generate a model of
the underlying PUF based on the the responses.

The server incorporates an advanced encryption standard
(AES)-128 based encryption system, a comparator, and a
querying mechanism for issuing queries and receiving re-
sponses from any global/local database in the system.

A. Threat Model
Like the previous authentication schemes [6], [7], [3], [5],
[8], the proposed protocol consists of an enrollment phase

X|
Device
Server Authentic/Not
Authentic -
Counter,
Ny AES NVM
Enc/Dec > Stream Authentication PRNG Counter |
i S - (Bit Shuffler and FSM) 1 L »| Counter,
ey (e_nye_s'y,;,e_hy,q) x+1 X
a i A OE > Counter;
uerying 5 C=RN,4=

| Mechanism \ ‘_E— L e U S » Counter,
3 : ;
) &= 3
[en esi]eh,] s Even/0dd
en, es; eh v Separator 2
e_n, e s’y e_hy :
Control Ly ;:
en, es. eh, Database Logic >
> v,

e_ni e_s’; e_h

(b)

Fig. 2. Proposed scheme (a) Server-side along with the database, (b) Device-side

and an authentication phase. The enrollment phase occurs in a
secure environment where the device’s data (e.g. CRPs) is col-
lected. All the devices in an IoT network are assigned unique
identifiers by the server. The assigned IDs are represented as
id, where x € ZT denotes a device and Z1 denotes the set
of positive integers (e.g., the ID of device 1 is denoted as
idq). The authentication of the devices occur in an insecure
environment. Unlike previous approaches, the adversary, in
our protocol, can eavesdrop, manipulate, and/or replay the
data across all the communication links during various phases
of authentication. These communication links include the
channel between the server and the devices as well as between
the server and its external/internal database storing the data.
By using these links, the adversary can perform modelling
attempts on the devices in the network. The adversary can also
brute force query the device’s open interface with any past
or predicted future messages/challenges. We further assume
that the adversary has complete read access to the server’s
database containing the data associated with various devices
in the system.
B. Enrollment Phase

During the enrollment phase, different cryptographically
secure random number streams are generated by hashing the
output of C'ountery as shown in Figure 2(b). The generated
random numbers (RNs) are all 128 bits wide and represented

as:

RNs =mng,ny,... (D
where n; is the i*" random number. Every even-indexed RN is
encrypted and stored in the first column of the database (e_n,)
as shown in Figure 2(a). Here x represents the index number
corresponding to an even index whereas = + 1 corresponds to
an odd index. Every odd-indexed RN is used as a seed for a
pseudorandom number generator (PRNG), that is, PRN G5 to
derive sub-challenges (< ¢ >) for the PUF. The corresponding
responses are hashed then encrypted, and stored in third
column of the database (e_h,1). We also store the encrypted,

sy v oy Mi—1, Mgy - -

shuffled version of every odd indexed RN in the second column
of the database (e_s),,). The details of shuffling operation
will be explained in Section III-D. After the completion of
enrollment, the initial value of Countery, which generates
the first RN, is stored in the device’s NVM. It is worth
mentioning here that since the enrollment occurs in a secure
environment, the odd-indexed RNs (n1,n3, ..., ng+1, ... N4, -..)
are never exposed after enrollment rather their shuffled ver-
sions (s, 8%, .+, Siy4 1,5 55, ---) are exposed. Also, the row
indices for the database can be randomized such that the
encrypted, first RN (e_ng) and corresponding columns can be
placed at an arbitrary row number within the database instead
of the first row.

C. Authentication Phase

Figure 3 shows the series of operations during the first
authentication event and can be extended to any authentication
event d. The server initiates the authentication session and
obtains the device identifier ¢d’ from the device. The server
checks the id’ obtained from the device against the id assigned
to the device during enrollment for authenticity. The control
logic in the device configures the MUX (MUX(1)), shown
in Figure 2(b), to use Countery value as input to the hash
function. The device sends ng, the first RN (even-indexed)
generated after hashing the first Counterg value, to the server.
The server encrypts ng and queries the first column of database
to find the entry (e_ng). The server retrieves the entire row
(e_ng.e_s}, e_hy) and decrypts the row to get (ng, s}, hi).
The server sends the second value s} in the decrypted row to
the device.

The device, after sending ng, generates n; (odd-indexed),
by hashing the next Countery value. The RN n; is never
sent out from the device and is only used by the SA block.
The device then authenticates the server by passing s/, that
device received from the server, to the SA block. If the SA
block is evaluated correctly (i.e., SAfqqs = 1), the device
unlocks the PUF and sub-challenges are generated using 7.

Authentication

Server Device i
init;
Receive init
Set MUX(1)
Id’;n, ny €& Hash(Counter,)
Abort if id’; # id; D Increment (Counter,)
e_n, <Encrypt (ny) n, < Hash(Counter,)
Query Database(e_n,) SA & ny
Retrieve (e_n, e_s’, e_h,)
(ny s’y h;) <Decrypt (e_n,
e s’,e_hy)
s’
- Eval s’; using SA
if SAfigs # 1 then Lock
else <c> ¢ PRNG,(n,)
Release PUF
Set MUX(0)
R= PUF(<c>)
h, h’; ¢<Hash(R)
if (hy =h"y) Increment (Counter,)
Valid Device Store Counter, in NVM
else
Abort

Fig. 3. Operational cycle of first authentication event

The control logic sets the MUX configuration (MUX(0)) to
provide PUF response R as input to the hashing function.
The hashed response (h)) is sent to the server for verification.
The server verifies the device by comparing (h}) with the
decrypted third entry (h) of the row that server retrieved from
the database. If h) from the device matches hy, the device is
successfully authenticated.

After the device sends the hashed response (h}) to the
server, it increments C'ountery and updates the NVM with the
incremented value. The new value would be used to generate
ng, the next even-indexed RN, for the next authentication
cycle. This is done in order to prevent the generation of ng
again should the device be turned off and restarted which
would reset Countery. This approach ensures that every
authentication event is unique and has no correlation with past
events.

D. Stream Verification

The Stream Authentication (SA) block separates the de-
vice’s PUF from the input. It not only authenticates the
server but also locks out the device in case an adversary
tries brute forcing the device. This block uses a shuffling
scheme followed by an FSM. The SA block also has a counter
(Counters) that keeps track of the number of times a wrong
input has been applied to the device.

1) Bit Shuffler: The PUF-IPA incorporates a modified
Fisher-Yates shuffling algorithm [10]. The algorithm pro-
duces equally likely shuffles. Shuffling and deshuffling is
performed during enrollment and authentication, respectively.
Algorithm 1 shows the working of the shuffling operation.

Shuffling during Enrollment: During enrollment, for the
first shuffled output corresponding to n; (i.e., s}), the PRNG,
takes an initial counter value (C'ounter;) as seed and generates
a number sequence [nums, nums, ..., numeg4] used during the
shuffling operation. The counter then increments and uses the
incremented value as seed for PRN(G; to generate a new
number sequence for shuffling ng, the second odd-indexed

Algorithm 1 Bit Shuffling
Input: n,;: 128-bit odd-indexed RN from the hash function
Output: s/, ;: 128-bit shuffled version of the input

1: procedure BIT SHUFFLE
2 Map €64, €63 --+5 C1 <;leBa'“abQ»bl
3 for : < 64 to 1 do
4 j + PRNG;(Range(1,1))
5: Swap (¢, ¢;)
6 5/65—1'] TG
7 end for
8: end procedure

RN. In this way, the shuffled versions of all odd-indexed RNs
are generated, encrypted (e_s/,, ;) and stored in the server’s
database during enrollment. The initial value of the counter

used as first seed value of PRN G is stored in the device’s
NVM.

Deshuffling during Authentication: During authentication,
s, 1 is provided as input to the device and a deshuffling oper-
ation is performed. Taking the example of the first authentica-
tion event, s} is provided as input to the device. The PRNG,
gets the first counter value, and produces and temporarily saves
the number stream [numy, numa, ..., numey]. This stream is
used in opposite manner (i.e., from numj to numegy in line
3 of algorithm 1) to reproduce the original number (i.e., n1).
The counter value is then incremented and the device’s NVM
is updated with this new value for the deshuffling of s§ in the
next authentication cycle.

Hllustrative Example of Shuffling and Deshuffling Operation:
Figure 4 shows the process of shuffling and deshuffling on
a small random test input.Note that this is just a test case
and the actual input is 128-bits wide. An input bit string
100111001110 corresponding to random number 2570 is
taken as an example. In the first step the input bits are grouped
in a tuple of two bits. For the first run of Algorithm 1, an
RN in the range R (1,6) is chosen as there are six two bit
tuples corresponding to 12 bits in the test case. Assuming
that the RN comes out to be 1, we swap the 15¢ tuple of bits
with the last tuple (S (7,6)). In the next run, we decrease the
range by one (i.e., from R (1,6) to R (1,5)). Assuming that
the RN comes out to be 2, we swap the 2"¢ and the 5" tuple
(S (2,5)), and so on until we reach the last run (i.e., R (1,1))
where no swapping is done. The final shuffled output comes
out to be 001011110110 corresponding to decimal 758. Note
that for any other random number stream, the output will
be different then the one presented above. Deshuffling is
performed using the same number stream but in opposite
manner (i.e., from R (1,1) to R (1,6)) to regenerate the original
input as shown in Figure 4(b). Note that the case of R(1,1) is
not shown in Figure 4 (a) and (b) as no shuffling/deshuffling
is performed.

2) FSM-based Locking: The second sub-block in SA is an
FSM, which takes the deshuffled output as input and transi-
tions through the FSM states. During the first authentication

R(1,4)

1 1 1 1 1 0 0 1 1 1 1 1

0 0] 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 1 0 1 1 [0

1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 0 1 1 1 1 0 1 1 1
> D iy D DDyl
. 0 0 0 1 1 1 1 1 1 0 0 0
§ 0 0 0 1 1 1 1 1 1 0 0 °§§
t 1 1 [0 0 0 0 0 0 0 1 1 ®¢
6w 1 1 1 1 1 1 1 1 1 1 1 1 3
el
c £ o
[1 1 1 1 1 1 1 1 1 1 1
=9 9 0 [0 0 0 0 0 0 0 0 [

(a)

(b)

Fig. 4. (a) Shuffling of random input string, (b) Deshuffling to generate the original string

<

De-shuffled output @ { /
101100110110 Flag0 Flagl

No

l

Reset shuffler,
FSM, and
Increment
Counter,

Remain in
current
state/Lock

Unlock
PUF

Fig. 5. FSM-based state traversions

event, n; generated within the device, is broken down into
k-bit tuples and used as state transitions for the FSM. The
deshuffled bit stream is also broken down into k-bit tuples
and fed as input to the FSM. The FSM traverses through the
m*" state if m!"* k-bit tuple of the deshuffled output is equal
to m'" k-bit tuple of ny. This process continues for 128/k
states from So, S1, ..., SOFE12g/. The last state, SOE or the
Output Enable State, is reached only if a correct stream of
input is applied to the FSM which would be the case for a
valid authentication event. If the deshuffled output comes out
to be different than n, the FSM will be stuck in a state and
SOE will not be reached.

A checking mechanism based on flag values of different
states is also employed. Whenever the FSM transitions to
a state, the flag of that state is incremented by one. The
SOE raises the output enable (OE) signal if the flag values
of all the states are equal to one which corresponds to a
valid input stream and thus a valid authentication event. For
any other flag value, OE is not triggered. This provides an
additional layer of security against an adversary who aims to
brute force the device with random inputs. We also employ
a counter (Counters) which keeps track of the number of
times a wrong input is applied. If the FSM doesn’t reach
SOE or the flag values are not equal to 1, the counter is
incremented and the FSM resets all the states and waits for the

new deshuffled output. Every time the counter increments, the
incremented value is stored in the device’s NVM. If Counters
reaches a threshold value 7 (7 can be set by the designer or
operator depending on the application), the device locks out
and needs to be unlocked explicitly by the server. This FSM-
based locking mechanism is possible in PUF-IPA as the device
has complete control of its challenges and responses. The
mechansism enables the device to circumvent any temporary
hardware fault, not necessarily an adversarial attack, which
might occur during device operation. Figure 5 elaborates the
FSM locking/unlocking mechanism by an example of the same
12-bit random number that was used in shuffling/deshuffling
operation in Figure 4.
IV. PROTOCOL VALIDATION

A. Reliability

Arbiter PUFs (APUFs) are prone to environmental varia-
tions and thus generate noisy responses. The average noise
level for a basic 64-stage Arbiter PUF is 4% in the temperature
range of -40C to 85C [6]. The PUF-IPA relies on the under-
lying APUF in the device to generate reliable responses since
no model or CRP is being stored in the server’s memory. The
Hamming distance-based thresholding for authentication [6] is
not possible in PUF-IPA because of response string hashing
at the PUF output. Hardware overhead renders usage of ECC
infeasible [5]. It has been shown that a k-stage APUF follows
a linear additive delay model [2] of the form:

A=aTd, (2)

where 1 and ® are vectors of dimension k+ 1 in Eq. (2). The
path delays of substages of an Arbiter PUF are encoded by
the vector w, whereas the feature vector B is only dependent
on the applied k-bit challenge vector C. In order to find &,
runtime delay in stage q is computed and represented as 62/ '
In general, 52 represents the runtime delay of a stage ¢ in
crossed MUX configuration whereas 5; indicates the runtime
delay of a stage ¢ in straight MUX configuration. The vector
w can represented as shown in [2] by:

- 1 2 3 ko, k+1\T
W= (whw? w?, ..., Wk T T, 3)

where, .) 0) 0 s
1_51_51 wq:6q71+6q71+5q_6q

5 5 .

14
12
10

Error %

o N B O

0 0.5 1 1.5 2 2.5 3
Noise Factor a

(a)

14
12
10

——r=3 r=5 r=7 r=9 —e-r=11

Error %

o N B O

_o——o——o

———8 & o —e——e——
e —

0 0.5 1 1.5 2 2.5 3
Noise Factor a

(b)

Fig. 6. (a) Response error (%) vs noise factor (), (b) Response error (%) vs noise factor («) against reliability factor (r).

Vq €[2,..,k], and wFt! = . Since @ is dependent on
the applied challenges, it is of the form,

3(C) = ('(C), 9*(C), ..., 8" (), 1), (5)

where ™ (C) = Hszm(l—%q) for m € [1, ..., k]. The output
response bit ¢ of the APUF is determined by the sign of the
final delay difference A as,

. {1, A>0
1 =

0, A <O

Instead of adding non-linearities in order to impede the
adversaries’ modeling capabilities, we implement a strong
control logic for restricting access to the PUF circuit. To
stabilize the response behavior, PUF-IPA introduces a self-
checking mechanism in which a PUF’s challenge is evaluated
r times, where r is referred to as the reliability factor, and the
output response bit is chosen based on the majority voting.
During authentication phase, since the generation of challenge
is controlled by the device itself, the device has the ability
to perform self-checking. This checking is done by using
the current odd-indexed RN. The PUF output response bit is
chosen based on the majority voting between 0’s and 1’s. This
is done for every response bit and the final response string is
ensured to be stable.

We verify our proposed approach by testing the PUF model
presented in Eq. (2) under noisy conditions. Since thermal
noise can be approximated as Gaussian distribution, we can
simulate the PUF’s behavior by adding Gaussian noise in the
path delay elements as,

0 =69+ N

89+5;
2

(6)

)
®)
0

where N = [n{,n9,...,n},,] and N} = [n{,n3,....,n}]
are random variables selected from Gaussian Distribution
N(p, 02,;,.) with mean g and variance o2 ;... We set 1 = 0
and o7 ;.. = a x 0.05 where « is referred to as the noise
factor, and is used to control the variance of noise (c2,,,.)-
Soft models of random PUF instances are generated and
evaluated using three dimensional randomly generated chal-
lenge matrix of 50,000 x 128 x 128 bits and corresponding
50, 000 x 128 bits responses are stored for each PUF instance.
These PUF instances are evaluated again by injecting noise
(increasing «v) into the path delays as shown in Eq. (7) and

Eq. (8). We determine the response accuracy by calculating

§1 =61+ N,

the hamming distance between the stored responses and new
responses. Figure 6(a) shows the response accuracy against
different values of « of a single PUF instance. Figure 6(b)
shows the response accuracy for the same PUF instance
but with self-checking enabled. It can be seen that the PUF
response accuracy increases from 89% to ~ 98% for the same
value of o as we go from » = 0 to » = 11 thus ensuring
reliability even in the absence of error correcting logic.

One of the greatest advantage that the PUF-IPA has over
all the previously proposed protocols is that the device has
the capability to perform dynamic reliability checking of the
challenges. Since the device has explicit control of its own
challenges, it can self-check the response accuracy without
permission from the server at random time instances. Assum-
ing that at time ¢,,, the odd-indexed RN is n44 1, and the device
evaluates the PUF with » = 11. If any of the response bits
has an error percentage close to 40% (minority to majority
response bit ratio of ~ 4:7), then this RN is discarded and a
new RN is generated which would be used for authentication.
This ensures noise-free authentication events even during
environmental variations. Thus, even though self-checking can
improve response accuracy drastically, dynamic checking can
prevent the usage of challenges that produce noisy responses
because of environmental affects during authentication events.
B. Security Analysis and Area Overhead

1) Modeling Attacks: The PUF-IPA has no explicit storage
of CRPs or model in the server’s database, hence, no model
can be generated even by acquiring the database. Furthermore,
no PUF model is used by the server to estimate the responses
during authentication. As a consequence, any adversary moni-
toring the server computations or channel will not get any CRP
information for generating software models. Moreover, since
the responses are hashed, no correlation between past and
current messages (Figure 3) exists and every authentication
event is unique. This impedes the adversaries’ capability of
generating an efficient software model of the underlying PUF.

2) Brute Force and Replay Attack: We consider the case
where the adversary has complete access to the device’s
interface and can brute force query to obtain responses. Since
the protocol restricts PUF’s access, the adversary cannot apply
random challenges and get responses. The shuffler and the
FSM will halt the operation in case of a wrong input and thus
no response will be generated by the device. The probability of
guessing the correct input for the shuffler is 5 ~ 7 x 107,

TABLE I
SECURITY AND AREA COMPARISON

Property C-PUF[5]

Slender PUF[8]

Lockdown[6] PUF-FSM[7] Proposed PUF-IPA

ECC and helper data
Scalable
ML-based modeling attacks
Privacy preserving
Protection against server breach
Dynamic self-checking
Area (GE) 2

N R NN

Z
>XXXX\X

% X X X < X
2% X X X N X
EENENENE RN

thus making it extremely unlikely to be predicted correctly.
The adversary can attempt replay attacks by using any previ-
ously sent input. Since C'ountery generates a new RN after
every valid authentication event and the shuffler as well as the
FSM adapts to the new RN, any previously used valid RN
will be treated as a wrong input which will subsequently lock
out the device after specific number of attempts determined
by Countery, and 7 (Section I1I-D2).

Table I depicts that the PUF-IPA not only provides all
the security features offered by previous approaches but also
preserves the device privacy by not storing any model or CRP
in the server. Unlike previous approaches, PUF-IPA also does
not require any secure memory in the server or communication
link implying that even in the case of a server breach, the
security of the devices remains intact.

3) Implementation and Area Overhead: Implementation of
PUF in FPGAs is a somewhat challenging task because of
the symmetric routing requirements. A slight non symmetry
can cause bias in delay circuit of the APUF. Authers in
[11] introduced the concept of implementing the APUF using
programmable delay lines for removal of delay bias from PUF
circuit. We use the same concept and implement the PUF
in Xilinx ZC-706 development board having a Zyng-7000
SoC. We also employ reliable response selection mechanism
provided by [7]. By employing reliable responses, the error
rate is significantly reduced. We compare the area overhead
of PUF-IPA against various approaches in Table 1. The gate
equivalent (GE) of PUF-IPA is slightly less compared to the
recently proposed PUF-FSM [7] but with many additional
advantages as shown in Table I. In PUF-IPA, the server only
needs to send 128-bit message to the device whereas in PUF-
FSM [7], the server needs to send 160 x 64 = 10240 bits,
which is a huge communication overhead. The hashing scheme
employed by PUF-IPA is based on SPONGENT block cipher
(as in [7]), which produces a 128-bit output at a cost of 737
GE. The FSM is realized using =30 GE. The total NVM
required by PUF-IPA is 140 bits (i.e., 12847+5 bits). Here
128 bits represent C'ounterq value, and 7 and 5 bits represent
Countery and C'ounters, respectively. Another advantage of
PUF-IPA is that the server does not need to have a dedicated
secure storage for storing CRPs or the modeling parameters of
the devices. This reduces the cost associated with maintaining
a secure storage as well as the communication links while not
compromising the security.

V. CONCLUSION

In this paper, we have proposed PUF-IPA, a strictly con-
trolled PUF-based IoT device authentication protocol, which
(i) closes the open interface between the input and the PUF
by implementing a strong controlled logic that denies the PUF
access to adversaries, (ii) preserves the identity of the devices
by removing any and all models or explicit CRPs from the
server’s database and the communication links, and (iii) is
extremely lightweight and scalable for IoT based deployments.
We have demonstrated the superiority of PUF-IPA in terms of
security, reliability, and preservation of device privacy over
previously proposed PUF-based authentication protocols.

REFERENCES
[1

—

Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas.

Silicon physical random functions. In Proc. of the 9th ACM Conference

on Computer and Communications Security, pages 148—160, New York,

NY, USA, 2002. ACM.

Ulrich Riihrmair, Frank Sehnke, Jan Solter, Gideon Dror, Srinivas

Devadas, and Jirgen Schmidhuber. Modeling attacks on physical

unclonable functions. In Proc. of the 17th ACM conference on Computer

and communications security (CCS), pages 237-249. ACM, 2010.

Jiliang Zhang, Lu Wan, Qiang Wu, and Gang Qu. Dmos-puf: Dynamic

multi-key-selection obfuscation for strong pufs against machine learning

attacks. arXiv preprint arXiv:1806.02011, 2018.

Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Tech-

niques for design and implementation of secure reconfigurable pufs.

ACM Trans. on Reconfigurable Technology and Systems (TRETS), 2(1):5,

2009.

Blaise Gassend, Marten Van Dijk, Dwaine Clarke, Emina Torlak, Srini-

vas Devadas, and Pim Tuyls. Controlled physical random functions and

applications. ACM Trans. on Information and System Security (TISSEC),

10(4):3, 2008.

Meng-Day Yu, Matthias Hiller, Jeroen Delvaux, Richard Sowell, Srinivas

Devadas, and Ingrid Verbauwhede. A lockdown technique to prevent

machine learning on pufs for lightweight authentication. IEEE Trans.

on Multi-Scale Computing Systems (TMSCS), 2(3):146-159, 2016.

Yansong Gao, Hua Ma, Said F Al-Sarawi, Derek Abbott, and Damith C

Ranasinghe. Puf-fsm: A controlled strong puf. [EEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems (TCAD),

37(5):1104-1108, 2018.

[8] M Rostami, M Majzoobi, Farinaz Koushanfar, Dan S Wallach, and
Srinivas Devadas. Slender puf protocol: A lightweight, robust, and
secure authentication by substring matching. In IEEE Symposium on
Security and Privacy Workshops, pages 33—44. IEEE, 2012.

[9] Georg T Becker. On the pitfalls of using arbiter-pufs as building

blocks. IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems (TCAD), 34(8):1295-1307, 2015.

Tapan Kumar Hazra, Rumela Ghosh, Sayam Kumar, Sagnik Dutta, and

Ajoy Kumar Chakraborty. File encryption using fisher-yates shuffle. In

International Conference and Workshop on Computing and Communi-

cation (IEMCON), pages 1-7. IEEE, 2015.

Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. Fpga-

based true random number generation using circuit metastability with

adaptive feedback control. In Proceedings of the 13th International Con-
ference on Cryptographic Hardware and Embedded Systems, CHES’11,
pages 17-32, Berlin, Heidelberg, 2011. Springer-Verlag.

[2

[3

[t}

[4

=

[5

[6

=

[7

—

(10]

[11]

