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ABSTRACT Human activity recognition is an emerging and important area in computer vision which seeks
to determine the activity an individual or group of individuals are performing. The applications of this field
ranges from generating highlight videos in sports, to intelligent surveillance and gesture recognition. Most
activity recognition systems rely on a combination of convolutional neural networks (CNNs) to perform
feature extraction from the data and recurrent neural networks (RNNs) to determine the time dependent
nature of the data. This paper proposes and designs two transformer neural networks for human activity
recognition: a recurrent transformer (ReT), a specialized neural network used to make predictions on
sequences of data, as well as a vision transformer (ViT), a transformer optimized for extracting salient
features from images, to improve speed and scalability of activity recognition.We have provided an extensive
comparison of the proposed transformer neural networks with the contemporary CNN and RNN-based
human activity recognition models in terms of speed and accuracy for four publicly available human action
datasets. Experimental results reveal that the proposed ViT-ReT framework attains a speedup of 2× over
the baseline ResNet50-LSTM approach while attaining nearly the same level of accuracy. Furthermore,
results show that the proposed ViT-ReT framework attains significant improvements over the state-of-the-
art human action recognition methods in terms of both model accuracy and runtime for each of the datasets
used in our experiments, thus verifying the suitability of the proposed ViT-ReT framework for human activity
recognition in resource-constrained and real-time environments.

INDEX TERMS Transformer neural networks, human activity recognition, video analytics, recurrent neural
networks, convolutional neural networks.

I. INTRODUCTION
One of the most important and fastest growing fields in
machine learning is computer vision. Computer vision is the
process of using a computer to interpret the real world through
some form of sensor. Modern computer vision involves
using artificial neural networks to determine patterns or
features in the data from the sensor and then using these
discovered features to inform other processes. This process
can be used to learn from images or videos by treating
each frame in the video as a separate image and performing
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processing on each frame and the video as a whole. In recent
years, convolutional neural networks (CNNs) have gained
significant traction in the computer vision community for
image classification [1]. Popular CNN models used for
image classification, such as AlexNet [2], VGG-16 [3], and
ResNet [4], contain long chains of convolutional layers of
different densities and filter sizes along with pooling and
activation layers. As early as 2012, this task led to very
deep implementations of image classifiers [2], and even more
recently, deep CNNs with residual connections that provided
even better results [4]. This final approach created ResNet [4],
a residual network which uses a residual connection to
recombine the extracted features with previous inputs at
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different time steps in the model. This approach helped
create more robust models that could be trained more easily
than deep CNNs without residual connections [4]. These
models, once trained, can even be transferred to domains they
were not initially trained in, via a technique called transfer
learning [5]. This process has been done with relative success
depending on both the dataset used for initial training and
the domain of the testing data [6]. CNN models, including
the ResNet classifier, have seen recent success and have
been the dominant models used for computer vision tasks.
However, the high model complexity of deep CNNs [7] is
not ideal for all systems and shows a potential need for
new model architectures. For example, for the internet of
things (IoT), a network of physical devices which generates
data from multiple different sources [8], there is a need
to process the generated data efficiently. In many of these
scenarios, the devices have limited resources to apply to the
image classification or object detection tasks. Furthermore,
newer trends in computing, such as edge computing [9],
where the data is processed closer to the data source as
opposed to cloud computing paradigm, necessitate more
efficient and lightweight implementations. Consequently,
there is a pressing need for developing lightweight human
activity recognition models that can be executed efficiently
on resource constrained IoT and edge devices.

Human activity recognition is a more complex task
than image classification or object detection. Often the
activities that are being classified involve some form of time
dependence and cannot be determined from a single frame.
For example, an alley-oop dunk, one of the most exciting
highlights in all of sports, consists of the combination of
a drive from a player, a pass to said player, a catch, and
a dunk. There are few points, if any, at which a single
frame of this sequence would give enough information to
determine the action being performed, making it hard to
classify this highlight. This is similarly true in soccer [10],
as well as non-sports domains such as intelligent surveil-
lance [11] where most actions consist of a combination of
smaller actions that must all be similarly classified. These
classifications are then combined to determine the overall
action from the data. This is done by combining the features
extracted by a CNN with the time-dependent feature analysis
of a recurrent neural network (RNN).

The RNN maintains hidden states that allow for greater
impact of time dependencies on their input data [12].
Many variants of RNNs exist, with the two most used in
activity recognition being long short-term memory (LSTM)
units, and gated recurrent units (GRUs). LSTMs have an
internal hidden layer that contains multiple memory cells
to ‘remember’ previous inputs. These cells inform three
different output gates which serve as the output and updaters
for future LSTMs [13]. GRUs aremuch the same butmaintain
fewer internal states and have two output gates instead of
three [14]. However, GRUs maintain similar performances to
LSTMs [15]. While RNNs have seen some success, they also
suffer from the same complexity issues as CNNs. RNNs are

also not obviously parallelizable, as an RNN layer contains
multiple RNN units that compute the output of the layer
sequentially. As a result, RNNs often have long training
and prediction times [16]. This can lead to issues when
operating in real-time systems or on edge devices. To fix
this, ‘attention mechanism’ were constructed, which allow
the model to ‘pay attention’ to certain parts of the input
and ignore others. Attention was first used in conjunction
with RNNs in sequence-to-sequence models but was later
used on its own in development of the transformer [16]. The
transformer was shown to not only be more efficient and
lightweight, but to have similar performance to traditional
methods when trained on a sufficiently large dataset. Our
main contributions in this paper are as follows:

1) Elaborating and exploring the functionality and effec-
tiveness of the transformer neural networks (TNNs).

2) Presenting the domain adoption framework showing
the applicability of TNNs for human activity recogni-
tion task.

3) Proposing a recurrent TNN (ReT) to replace the
computationally complex RNN in the typical activity
recognition network chain.

4) Proposing a specialized vision TNN (ViT) to replace
the computationally complex CNN feature extractor in
the typical activity recognition network chain.

5) Evaluating the proposed ViT-ReT framework for
human activity recognition using contemporary human
activity recognition datasets and comparing the results
to the state-of-the-art activity recognition models.

The rest of the paper is organized as follows. Section II dis-
cusses the general activity recognitionmodel flow and current
state-of-the-art activity recognition models. Section III gives
background information regarding sequence-to-sequence
models, transformers, and attention. Section IV shows the
application of the different TNNs to activity recognition
models. Section V describes the practical implementation
of the TNNs created for this paper. Section VI describes
the experiments performed on these models and Section VII
describes the experimental results. Finally, Section VIII gives
further discussion of these models and Section IX provides
future research directions.1

II. RELATED WORKS
Activity recognition generally consists of two main phases:
feature extraction on the input data sequence, and a combina-
tion of the extracted features into a time-dependent classifier.
The standard version of this model uses a convolutional
layer that is applied to each time step of the input. The
input features extracted from this layer are kept in their
original sequence and collectively input into a Recurrent layer
(usually using LSTM units or GRUs), and then passed to a
dense layer for classification [17]. This model structure is
outlined in Fig. 1, and Fig. 2 expands on the CNN layer,
looking directly at a single CNN block applied to a single

1https://github.com/JamesWensel/TranformerActivityRecognition
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FIGURE 1. General activity recognition model flow.

FIGURE 2. A single CNN block in the CNN layer of activity recognition
model.

time step. Fig. 3 expands on the RNN layers, showing the
sequential nature of RNN network architecture.

The CNN layer usually contains multiple layers of con-
volutional filters mixed with pooling and activation layers.
These layers can be very deep for improved performance.
Similarly, the RNN layer can be made up of any number
of RNN units, and there are usually at least 2 RNN layers
stacked on top of each other, feeding into a dense layer that
can also have any number of hidden layers and internal hidden
units.

While the traditional CNN and RNN model structures are
very common in activity recognition, they have flaws that are
inherent to the layers themselves. For convolutional layers,
to get good and reliable classifications on large datasets with

FIGURE 3. RNN and output layer of activity recognition model.

many classification categories, some form of deep and/or
residual CNN is necessary [4]. This causes complexity and
speed issues on devices with limited capabilities, such as IoT
or edge devices. The recurrent layers have similar problems,
as the final RNN in the chain is dependent on all the previous
units in the layer. This means to calculate each output, all
previous outputs must be calculated first, which creates a
bottleneck that can impact performance [16], especially on
edge devices. Sun et al. [18] have used this model structure
along with an extreme learning machine (ELM), a special
type of dense neural network that requires a significant
number of hidden nodes compared to general dense layers.
They have used the OPPORTUNITY dataset [19] to perform
classification on 18 classes of gestures. Their ELM model is
able to make accurate predictions on their gesture dataset,
but like all general activity recognition models [10], [11],
it is not suitable for resource-constrained environments or
edge devices for real-time systems because of its complexity.
In [20], Shotton et al. have introduced a novel approach for
3D pose recognition. Their model is capable of predicting
the 3D positions of body joints using only a single depth
image without relying on temporal information. Instead of
directly tackling the challenging task of pose estimation,
they have adopted an object recognition strategy. They
have devised an intermediate representation of body parts,
which transforms the complex problem of pose estimation
into a more manageable per-pixel classification problem.
Russo et al. [21] have updated this model structure using
only deep CNNs by first splitting their video data into three
streams, red, green, and blue (RGB), optical flow, and slack
foreground mask to perform classification on low resolution
and extremely low-resolution images. While their approach
removes the RNN layers and creates a simpler model as a
result, it is done by using deeper and more complex CNNs.
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This results in a model that maintains the speed issues of the
general activity recognition models on resource-constrained
devices.

Attention has also been added to activity recognition
models to improve accuracy. Ma et al. [22] have applied
attention layers after feature extraction from the CNN layers
and again after time series classification from GRU RNN
layers. In [23], Hussain et al. have presented a hybrid
approach that utilizes a vision transformer and an LSTM
for recognizing human actions in surveillance videos. They
have used the vision transformer for frame-level feature
extraction and the multi-layer LSTM network for captur-
ing long-term dependencies and classification of human
actions. Chen et al. [24] have introduced AdaptFormer as
a highly effective adaptation approach for transformers.
This approach enables efficient adaptation of pre-trained
vision transformers (ViTs) to a wide range of image and
video tasks. It achieves improved transferability without
modifying pre-trained parameters and surpasses many fully
fine-tuned models in action recognition benchmarks. Its
lightweight modules enable versatility, scalability, and sub-
stantial performance enhancements across multiple image
and video datasets. Ranasinghe et al. [25] have introduced a
self-supervised training method for video transformers that
utilizes unlabeled video data. By extracting local and global
spatiotemporal views of varying spatial sizes and frame rates
from a given video, they have aimed to match the features of
these views, and have aimed to make these features invariant
to spatiotemporal variations in actions. In another work,
Xing et al. [26] have conducted research on transformermod-
els for action recognition in a semi-supervised learning (SSL)
setting. They have proposed SVForemer, a novel approach
that incorporates a steady pseudo-labeling framework to
handle unlabeled video samples. The aim of their approach is
to leverage transformer models effectively in scenarios with
limited labeled data. Phong and Riberio [27] have introduced
a novel model called dynamic PSO-ConvNet for action
learning in videos based on their previous work in image
recognition. Their approach utilizes a framework where
the weight vectors of neural networks represent particles’
positions in phase space. These particles share their current
weight vectors and gradient estimates of the loss function.
To incorporate video data, ConvNets are integrated with
advanced temporal methods like transformers and RNNs.
Despite their strong performance across various datasets,
these models do not effectively reduce the overall complexity
of activity recognition models. As a result, these models may
not be suitable for resource-constrained environments that
require more efficient models.

To alleviate the issues produced when using general
activity recognition models in low resource environments,
we propose the use of two types of TNNs, vision transformers
and recurrent transformers, to replace both the CNN and the
RNN layers in activity recognition models. The proposed
TNNs are based on the preliminary findings of our work
presented in [28], which provides different configurations of

activity recognition model architectures with two different
feature extraction models (i.e., ResNet50 and ViT) and the
time- or sequence-dependent activity classification models
(i.e., LSTM and ReT). In this paper, we have conducted
significantly more extensive evaluations of our proposed
TNNs than [28] andwe have enhanced the performance of our
proposed TNNs considerably for human activity recognition
task using fine tuning. Moreover, we have evaluated our
proposed ViT-ReT framework on three additional benchmark
datasets and compared the results with the state-of-the-
art human action recognition methods. Since our proposed
TNNs, ViT and ReT can replace both the CNN and the
RNN layers in activity recognition models, respectively,
our transformer models serve to reduce space and time
complexity of the activity recognition models, allowing them
to run more efficiently on resource-constrained devices.

III. BACKGROUND
A. POSITIONAL ENCODING
Preserving the positional information in sequential data
is crucial. Reordering elements can drastically alter the
meaning of a sequence, as demonstrated by the example
sentence ‘‘I had baked a cake’’ versus ‘‘I had a cake baked.’’
Recurrent networks naturally preserve this information, while
non-recurrent networks need to ensure its conservation [16].

The initial stage of a TNN involves converting input
data into a tokenized and learned representation known as
an embedding. This representation is a vector where each
element corresponds to a distinct learned concept [29]. For
instance, in the case of a pixel sequence, a three-element
vector could represent the red, green, and blue values. Each
input element is transformed into an embedded vector, with
each value indicating the significance of the concepts to
the original element. The embedding vector can encompass
various concepts, and the values are learned during training.
The size of the embedding vector is a hyperparameter specific
to the problem, often set to 512 in TNNs by default [16]).

Typically, TNNs utilize an embedding for representing
input data, but this alone doesn’t capture positional informa-
tion. To address this, a positional encoding of the same length
as the embedding is added to each element. This encoding
represents the importance of each concept at each position
in the sequence. This positional data can be learned during
training, but TNNs often use a sinusoidal positional function
as it has shown similar performance to learned positional
data [16]. The addition of positional encoding allows TNNs
to retain and utilize positional information without residual
connections. It is a crucial step in the classification process
for maintaining relevant positional details [16].

B. SEQUENCE-TO-SEQUENCE MODELS
Sequence-to-sequence models are advanced neural networks
that map input sequences to output sequences step by
step [30]. These models maintain the meaning of the
input through their own representation of the data. The
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FIGURE 4. Overview of encoder-decoder structure.

encoder-decoder structure forms the basis for these models.
The encoder-decodermodel has two distinct parts that operate
independently: an encoder and a decoder. The encoder takes
an input sequence and encodes it into a vector that contains a
representation of the meaning of the initial sequence. This
encoding is then fed to the decoder to generate an output
sequence in the desired domain [31]. Encoders can be built
using RNNs to generate the encoding sequentially, while
newer architectures like the transformer generate the entire
encoding in one step using self-attention [16]. This general
structure can be seen in Fig. 4. The decoder generates the
output sequence by taking the encoding, and producing one
element at a time. The previously generated elements are used
as inputs to the decoder at the next time step, which combines
these elements with the encoding to generate the next element
in the sequence. This process is repeated in the decoder until
the entire sequence is generated.

These sequence-to-sequence models are commonly used
in natural language processing. These models involve an
encoder that takes a sentence with positionally embedded
words and creates an encoded representation of the sentence.
The encoder’s output is then passed to the decoder, which
generates the target language words one at a time. The
decoder utilizes the previous output words and combines
them with the encoding to generate subsequent words until
the entire translated sentence is formed. The encoder and
decoder are trained together to complement each other.
However, the basic encoder-decoder structure using RNNs
faces challenges with longer sequences [32] and struggles to
interpret and generate sentences longer than those used in
training. These issues are addressed and improved upon by
the transformer model, which will be discussed in the next
subsection.

FIGURE 5. Architectural overview of transformer encoder.

Since its inception, the encoder-decoder model structure is
widely used in natural language processing. Its application
to activity recognition, however, may not be immediately
apparent. The specific application of sequence-to-sequence
models to activity recognition will be explained in detail in
Section IV.

C. TRANSFORMER NEURAL NETWORK
Transformer neural network is a specialized type of sequence-
to-sequence model introduced by Viswani et al. [16]. They
introduced a special type of self-attention called ‘‘scaled dot-
product attention’’, which replaces RNNs in both the encoder
and decoder, enabling parallel processing of the entire input
sequence during encoding. This results in significant speed
improvements during training and prediction. While the
decoder remains sequential, the use of TNNs eliminates a
major bottleneck. TNN-based models, including BERT [33],
exhibit robustness and achieve high accuracies similar to
other sequential models.

TNNs have a structure similar to the general encoder-
decoder model, but with key differences. Numerical repre-
sentations are assigned to input sequences, and positional
information is added for embedding. Self-attention is applied,
using ‘‘multi-headed attention’’ blocks to focus on differ-
ent aspects of the input sequence and preserve varying
levels of meaning. The output from the attention blocks
and a feed-forward network is combined using residual
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FIGURE 6. Architectural overview of transformer decoder.

connections [4]. The result is normalized and combined
with the input, enhancing the encoder’s robustness and
learning capabilities. This structure can be visualized in
Fig. 5. In the Transformer model, the decoder receives the
encoded output sequences. It applies multi-headed masked
attention to handle current and previous outputs, and another
multi-headed attention block combines the input with the
encoder’s output. The output of this layer is fed to a feed-
forward network, like in the encoder block. There are again
residual connections around both multi-headed attention
blocks and the feed-forward network that are combined
with the original input and normalized. The decoder output
then goes through a linear layer with softmax activation to
produce a probability distribution as the output. This is then
passed back to the beginning of the decoder as the input
of the next layer. The decoder structure is shown in Fig. 6,
and the overall structure of the transformer is depicted in
Fig. 7.

TNNs have quickly become the most important neural
network for sequence-to-sequence tasks. While it is clear,
TNNs are extremely powerful, it is still not obvious how
TNNs can be applied to video data or activity recognition
as a whole. This process will be described in detail in the
Section IV.

FIGURE 7. Detailed architectural overview of transformer.

D. SELF-ATTENTION
Self-attention is a process by which a neural network learns
which parts of the input it should focus on. While there are
many kinds of attention, such as additive attention [32], this
section will focus on scaled dot-product attention [16] as it
is the basis for the transformer models created by Viswani,
et al. [16]. Attention is derived from database queries. The
process begins with a set of key-value pairs and involves
mapping a set of queries to those keys and combining the
result with the initial values to get the output. When given a
set of queriesQ, keysK , and values V , whereQ,K , and V are
all matrices, and dk is the number of dimensions of the keys
matrix, the scaled dot-product attention can be calculated by
eq. (1):

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (1)

While not immediately obvious, this equation is based on
the equation for cosine similarity [34]. The cosine similarity
of two vectors A and B is given by eq. (2):

CosineSimilarity(A,B) =
A · B

||A|| ||B||
(2)

The above equation (eq. (2)) calculates the similarity
between vectorsA andB by taking the dot product and scaling
it with their magnitudes. It yields a value between +1 and -1,
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FIGURE 8. Scaled dot-product attention.

resembling the cosine of the angle between the vectors. This
is a simplified version of the equation presented in eq. (3).

QKT
√
dk

(3)

In this case, the queries matrix and the transpose of
the keys matrix serve as A and B, respectively, and instead
of scaling by the product of their magnitudes, the result is
scaled by the root of the number of dimensions of the keys
matrix. This scaling value was chosen as an extension to dot-
product attention to give it better performance as the keys
matrix becomes larger. This was done because the dot product
at higher dimensionalities of the keys matrix will be very
large and would have a negative effect on the performance
of the softmax function otherwise [16]. The result of the
scaled dot-product is then passed through a softmax layer,
giving us a probability matrix that is used as the weights for
the values matrix. This process, including masked attention,
is illustrated in Fig. 8. This can also be written to resemble
typical neurons more closely, as in eq. (4):

yk = Wxk , (4)

where

W = softmax
(
QKT
√
dk

)
and

xk = V

The encoder and decoder attention blocks have different
inputs for queries, keys, and values. In the encoder, all the
three matrices are identical copies of the input sequence.
This might seem counterintuitive, but it is a crucial step
in capturing the meaning of the input. For instance, in the
sentence ‘‘They chose to eat pizza’’, each row element in the
keys matrix represents a word, while the data corresponds

FIGURE 9. The process and results of scaled dot-product attention.

FIGURE 10. Example weighted values matrix.

to its learned embedding. When performing the scaled dot-
product, the resulting attention matrix shows the similarity
between each word pair. Applying softmax to the attention
matrix yields similarity scores between 0 and 1, indicating
the degree of likeness between words. For example, a score of
0.8 between ‘‘eat’’ and ‘‘pizza’’ suggests a strong association,
while a score of 0.1 between ‘‘they’’ and ‘‘to’’ indicates a
weaker relationship. This process as well an example softmax
attention matrix is shown in Fig. 9. The softmax attention
matrix from the encoder is used to weigh the values, resulting
in a final matrix where each row corresponds to the original
words in the input sentences. The data in each row represents
a weighted dot product indicating the impact of each word
on the word at that row index.The output of this layer is
demonstrated in Fig. 10.

The decoder attention blocks function similarly to the
encoder, but with two key differences. Firstly, the queries,
keys, and values in the masked attention block are based
on the current output sequence (or in the case of training,
the correct output sentence). The attention matrix is masked
to prevent the decoder from accessing future elements in
the sequence. This ensures that during training, even if
earlier predictions were incorrect, the decoder has the correct
information to predict subsequent elements. The mask hides
information beyond what the decoder has already generated.
This simulates the practical scenario where the decoder only
has access to previously generated elements when making
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FIGURE 11. Masking of a Softmax attention matrix after the third
element.

predictions. An example matrix showing the masking process
can be seen in Fig. 11.

Finally, the masked attention block generates a relevance
matrix containing the relevance of each word in the
currently generated output sequence to every other word
in the sequence. This relevance matrix will contain all
contextual information that is currently known about the
output sequence. This matrix is used as the values for the
second attention block in the decoder, and the encoded output
of the encoder block is used as the queries and keys. Using the
encoded output as the queries and keys allows us to calculate
a set of weights directly from the encoder output, and when
those weights are applied to the relevance matrix from the
first attention block, it will apply the encoded contextual
information of the input sequence to all currently known
contextual information about the output sequence. This gives
us a contextual matrix that contains all known context from
the input sequence and current output sequences. This is then
combined with a residual connection, normalized, and passed
through one last feedforward network, normalized one last
time, and passed into a linear classification layer with softmax
activation function to predict the next element in the output
sequence. These final layers all apply extra preprocessing
to their inputs to help improve consistency of the output
predictions.

E. MULTI-HEADED ATTENTION
The attention mechanism in TNNs is ‘‘multi-headed’’ as it
employs multiple attention blocks in parallel. Each attention
head has its own learned linear projection for queries, keys,
and values, which enables it to focus on different parts of
the input data. This approach enhances the model’s ability

FIGURE 12. Overview of the activity recognition pipeline using the
transformer for time series classification instead of the typical RNN.

to capture diverse aspects of the input sequence, leading to
more accurate classifications.

For a more detailed description of both TNNs and scaled
dot-product attention, see Viswani et al., [16]. Much like the
TNNs, scaled dot-product attention is the current state-of-the-
art attention method that is applied to many domains, and is
even used beyond TNNs [35]. However, the direct application
of TNNs to activity recognition is still not obvious.

IV. PROPOSED METHODOLOGY
A. RNN LAYERS
The application of TNNs for the RNN layers of the
generalized activity recognition model seen in Fig. 1 and
Fig. 3 is the simplest of the two applications. While TNNs
were designed for, and most used for, machine translation
tasks, there is nothing inherent to the model requiring word
embeddings to be used as the inputs to the model. The
encoder can take any sequential input, so long as the relevant
positional information has been encoded in the sequence,
the encoder will extrapolate out the relationships between
all elements in the sequence. So, if instead of a sequence
of words, the input was a sequence of frames, where each
frame was embedded with the information relevant to its
order in the video, the encoder would be able to find the
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relationship between all frames in the video and use this
to create an output containing the ‘‘meaning’’ of the video.
While the application of the encoder to get meaning from
the frames means video data can be used as the input to
the encoder, an important question arises: What sequence
will be generated by the decoder? Shockingly, the answer is
none.

In the case of video data (or any time series data that does
not generate an output sequence), there is no need to use the
decoder at all. Instead, the output of the encoder is fed directly
into a flattening layer to make the data 1-dimensional, and
then to a dense layer to make predictions. Conceptually, this
structure makes sense. After the multi-headed attention layer,
the Encoder has created a matrix from the initial sequence
that has been weighted by what the model has determined
is important about each element. This is passed into a
Feed-Forward layer to create an encoded output, which can
be thought of as an encoded representation of the ‘‘meaning’’
of the input sequence. So instead of using said ‘‘meaning’’ to
generate a sequence, this ‘‘meaning’’ can instead be used to
classify the input, which is exactly what our proposed model
does. Further, because our proposed model does not use the
decoder, there is no bottleneck in this section. Unlike when
RNNs are used to generate the final representation of the
data, there is no need to wait on the completion of any chains
of values waiting on previous states. Even in the application
of the TNN to sequence-to-sequence models, the data gets
bottlenecked at the decoder step. Since all values needed to
compute the output of the encoder are present at the start
of computation it is easily parallelizable, which allows for
increased computation speed. This model structure can be
seen in Fig. 12.

While the application of TNNs to any other time series data
would follow similarly, it is not easily apparent how to apply
this to non-time dependent data, such as single images, in a
way that it could replace CNNs.

B. CNN LAYERS
TNNs needs to be applied to data in a sequence. However,
the TNN itself does not learn anything from the positional
data of the input sequence. This is all done externally by the
positional embedding of the input sequence data. So, if the
non-time series data was somehow made to be sequential,
with the information about its locality still applied by the
positional embedding, then the data could be used in the same
manner as any time series data. It is by this process that the
TNN is applied to the individual frames of a video, or to any
other non-sequential data. To turn an image into sequence
data for a TNN, it is first split into patches, or smaller
subsections of the original image. These patches are then
grouped in sequence to be used as the input to the TNN. This
process can be seen in Fig. 13. The size of these patches
is a problem dependent hyper-parameter similar to CNN
filter size. For images with large object scales, larger patches
may be used, but for images with much smaller scale, small
patches are necessary.

FIGURE 13. Splitting a frame into patches and passing them to a
transformer for classification.

The TNN will then perform a pseudo feature extraction,
by determining the internal ‘‘meaning’’ of the image, and
using a dense layer to classify this output, in the same manner
as for time series data. The patching of an image and using it
as a sequential input to a TNN is the process taken by a vision
transformer [36]. Vision transformers have been shown, when
trained on a sufficiently large dataset, to perform as well
as state-of-the-art deep residual CNN networks [36], while
remaining more lightweight and efficient than long CNN
chains. The last important step in the application of TNNs
for activity recognition is utilizing the vision transformer
alongside the recurrent transformer.

C. RNN AND CNN LAYERS
An important note before this section is it is not necessary
to implement TNN models for both halves of the activity
recognition model. The recurrent transformer (ReT) can
replace the RNN layers only and train on the features
extracted by a deep residual CNN more efficiently and with
as much accuracy as the typical LSTM or GRU chains.
Alternatively, the vision transformer (ViT) can be used to
replace the deep residual CNN to perform feature extraction
from the frames and pass the data to the RNN layers. Still,
combining the ReT and ViT will prove to alleviate the largest
amount of complexity and efficiency issues encountered by
current activity recognition models.

To use a ViT, it should first be trained separately on a large
image recognition dataset, such as ImageNet [37]. The ViT
needs a large dataset to train, and there are no sufficiently
large activity recognition datasets that would allow the ViT to
achieve adequate performance if first trained in conjunction
with a ReT. Once trained, it will be transferred to be the
backbone of the feature extraction section of the new activity
recognition model. Then, for a specific video input, a copy
of the trained ViT will be applied to each frame. The output
from this layer will be a series of encoded image data
generated from the patches of each frame in the sequence.
The encoded image data will be in the same order as it was in
the initial video, and it is this sequence that will be classified
by the Transformer. In the next section, we elaborate our
implementation of both a ReT model and a ViT model.
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FIGURE 14. Video preprocessing steps.

V. IMPLEMENTATION
We have built our model in Python 3.8.4 using Tensor-
Flow through the Keras API, utilizing Numpy for data
manipulation and OpenCV for video processing. The imple-
mentation of our model comprises of three main stages:
(i) data preprocessing, (ii) custom layers, and (iii) model
controllers. This section discusses the key components of our
implementations. Afterwards, the important hyperparameters
for both ReT and ViT models will be discussed, followed by
an explanation of the ViT used.

A. DATA PREPROCESSING
The first step in training a ViT is preprocessing the video files
in the datasets to be ready to train the model. This is done
by subsampling a selected number of frames from the videos
to create consistent length sequences. The entire video is not
used for a few reasons. As most consecutive frames in a video
contain the same data as their neighboring frames, using an
entire video would significantly increase training complexity
with little to no tangible benefit to accuracy. Our utilization of
subsampling also allows for the use of a video of any length
(even if a video has more frames than the number used for
the ViT) since it will be shortened to the correct sequence
length for the model. The selected frames are then resized to
224 × 224 pixels, which is the default size for ResNet50 [4].
The ViT has a default image size of 384 × 384 [36], but it
can be used for images of any size so only 224× 224 images
were used for testing to ensure the same testing conditions
for both models. After resizing all selected frames, they are
appended to an array containing all processed video files, and
the associated training label is appended to the same index in
a labels array for later training and testing. These two arrays,
along with an array containing the file path to each video file
are saved for later use. This process can be seen in Fig. 14.

Instead of completing these preprocessing tasks before
training, they could instead be applied as layers at the
beginning of the model, but we choose not to do this. This

is done to save time when training models, as the data
processing would need to be completed each time the models
are trained, and for the dataset used this takes a lot of time
(sometimes over 40 minutes on its own). This also allows for
more accurate data collections from the models as each layer
is then able to be monitored individually instead of only being
able to watch the entire model at once.

B. CUSTOM LAYER
To implement the ReT and ViT, three custom layers
were created: PositionalEncoding, Encoder, and Patches.
A functional wrapper, the BuildEncoder function, is also
created to make creation of an encoder more seamless.
Finally, a data generator is created to facilitate the use of a
large dataset.

1) POSITIONAL ENCODING
This layer applies the positional data to the input sequence.
It takes as an input the length of the sequence and the size
of the linear project used on the input. The length of the
sequence will either be the number of frames extracted from
each video, or the number of patches extracted from an image,
depending onwhether the ReT or ViT is being used. The layer
creates a positional encoding space and adds the associated
positional data to each element. It also linearly projects the
input to any size chosen through the linear layer (usually the
size is left alone or slightly downsampled, but any could be
selected).

2) ENCODER
This layer serves as the transformer. Since none of the
data generates a sequential output, the decoder is not
implemented. The layer first takes as input the size of the
input (which is the same as the size of the linear projection
from the PositionalEncoding layer). The input shape will be
conserved through the encoder as it is uses the size of the
final dimension of the input vector as the shape of the final
dense layer in the encoder. The next input is the shape of the
internal dense layer. This can be any size to allow for more
hidden neurons, but is usually set to twice the input size.
The next input is the number of heads for the multi-headed
attention in the encoder, usually 6 but could be any value.
Finally, the activation function for the internal dense layer can
be passed but is by default an ReLU activation function. This
layer first computes the attentionmatrix from the given inputs
using the built in MultiHeadAttention function from Keras.
The output of this is the weighted values matrix. This is then
normalized and passed into the dense layer, and normalized
again, at which point we have the predictions or feature
extracted vector depending on which TNN is being trained.

3) PATCHES
This layer splits an image into patches. It is given an
input of the length of one side of the patch in pixels
(8 was used but could be any value, smaller patch sizes will
create more patches). This layer uses TensorFlow’s built in
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patch extraction function to create patches, then reshapes the
resulting tensor to maintain the correct shape of the output.
If the input is a (Batch size, 64, 64, 3) shaped image tensor and
patches are 8×8, it will return a tensor with shape (Batch size,
64, 192) containing all 64 created patches from the image
[192 = 8×8×3]. The patches are not kept in a (8,8,3) tensor,
but instead the pixel data from each pixel in the patch is placed
into a 1-Dimensional tensor. This is done to eliminate future
reshaping of each individual patch.

4) BUILD ENCODER
This is a functional wrapper used to build a specific TNN
layer according to user specifications. It takes as input the
sequence length (number of frames) and the size of the final
dimension of the data tensor. It also takes as input all relevant
information for the PositionalEncoding layer (embedding
layer shape) and Encoder layer (dense layer shape and
number of attention heads). It then creates and returns a
Keras Model Transformer according to this specification.
To use this model, it will then be passed an input tensor with
the expected shape, which will be passed to the positional
encoding. After the positional data is applied, it will be passed
to the Encoder where it performs attention and creates a
weighted values matrix which is normalized, passed through
a dense layer, and a softmax layer to receive a classification
from the model.

5) DATA GENERATOR
A generator is used to train and test the models on different
datasets. After initialization, it is called instead of accessing
the dataset directly. When called, it returns the batch from
the datset at the current index. This allows the system to
only store the current batch of data in RAM instead of the
entire dataset, making more efficient use of the available
resources and allowing for larger datasets to be used. Without
a generator, the entire dataset must be loaded into RAM,
as well as all parameters for the model that is training. This
puts an unnecessary burden on the resources of the computer
and does not allow for large datasets. However, there would
be an increase in training and testing speed if the dataset could
be loaded into RAM in its entirety as with a generator some
time is required to access each subsequent batch of data.

C. MODEL CONTROLLERS
The model controllers are files that are used to either create
the models, run them, test them, or output data from them.
Any parameters that are not mentioned here have been
mentioned previously and will be covered again in the
hyperparameters subsection. The pictorial overview of the
model controllers are shown in Fig. 15.

1) CREATE MODELS
Themodel creation file has 5 functions, each of which creates
a different model. The ResNet_Model function generates
an instance of the pretrained ResNet50 with ImageNet
weights and global average pooling. This is applied over

FIGURE 15. The graphical overview of the model controllers.

an input sequence using the Keras TimeDistributed wrapper,
and is used to perform general feature extraction. The
LSTM_Model function generates a specified number of
LSTM layers following the general activity recognition RNN
layer architecture. All layers will have the same specified
number of LSTM units. The Vision_Transformer_Model
function creates an instance of a pretrained Vision Trans-
former model. The Untrained_VisionTransformer_Model
function creates a model ready to train for image recognition.
It will have a specified number of transformers stacked on
top of each other. Finally the Transformer_Model function
creates a Transformer model with the specified number of
transformer layers for classification of video data.

2) RUN MODEL
The model running file contains three functions that are used
to train, test, and evaluate a model, and to make predictions.
First, the FitModel function is passed a model and the
data to train on, as well as the batch size and the number
of epochs to use. It trains the given model with the data
provided, with the specified batch size and number of training
epochs. The PlotWholeModel function is a helper function
that visualizes a model as well as all functional layers. When
a functional layer is found, the function calls itself, passing
the functional layer instead of the whole model to dispaly the
model hidden in the functional layer. PredictModel is used to
make predictions on a model without training by passing it
a model (which is assumed to be pretrained) and a features
dataset to make predictions on.

3) TEST MODELS
Testing of the models is done using 2 main files: a file that
writes a test configuration JSON object (tests.json) and a
file that reads the object and runs tests according to those
specifications. The object contains a list of setup values
and a tests to perform, indexed by the model that is being
tested and the specific attribute of that model that is being
tested. A list of default values for each important parameter
is also included to allow for easy changing of the defaults
in subsequent testings. This object is read by a TestModel
file which loops over all the test types included in the
configuration object file and uses the default and setup values
alongside the specific model configuration being tested to
create a new model and test it. The results of these tests are
output and written to files for later interpretation.

4) OUTPUT MODEL DATA
The output model data file contains a function that creates
progress bars over the command line for better visual
representation of the progress completed by tasks. It also
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contains a class definitionwith 13 functions. The class creates
an object that is capable of storing timing and memory data
before and after any event by calling an associated method for
the object. This allows all other files to be much cleaner as
they do not need to manually track their own data for output.
It is also capable of writing all stored data to the command
line, to a text file, and to a csv file. This allows for easy
recording of test data for later interpretation.

D. HYPERPARAMETERS
This section contains a listing of each hyperparameter for the
model, and a brief description of each, including the values
used when training the model.

1) SEQUENCE_LENGTH: The number of frames to keep
from each video (usually 20).

2) IMAGE_HEIGHT: The height in pixels to resize the
video frames for activity recognition (usually 224).

3) IMAGE_WIDTH: The width in pixels to resize the
video frames for activity recognition (usually 224).

4) projection_dim: The size of the linear projection of the
input sequence by the PositionalEncoder (usually left
at or as close to input size as possible)

5) dense_dim: The number of neurons in the TNN’s feed-
forward network’s hidden layer (this does not change
the output shape as it is later projected back to the input
shape; it is normally 2× input shape)

6) activation: The activation function for Transformer’s
Feed-Forward Network’s hidden layer (defalts to
ReLU)

7) num_heads: The number of heads for multi-headed
attention.

8) patch_size: The length of one side of the patch to create
in pixels (usually 8 [creates 8×8 patches from image]).

9) LSTM_layers: The number of LSTM layers in an
LSTM model.

10) LSTM_units: The number of LSTM units in each layer
of an LSTM model.

11) transformer_layers: The number of transformer layers
for a recurrent transformer or vision transformermodel.

12) cateogries: The number of video or image categories to
train on (determined by the dataset being used)

13) batch_size: The number of examples to train on before
updating the weights of the model.

14) epochs: The number of times to train the model using
the entire training dataset.

E. VISION TRANSFORMER
To allow for quicker training and testing ofmodels for activity
recognition, we have used a pretrained implementation of
the vision transformer [38]. This implementation utilizes
the vision transformer weights pretrained on ImageNet by
Steiner et al. [39]. We have selected these pretrained weights
to ensure that both ResNet and the vision transformers
are trained on the same data in the same manner as
Dosovitskiy et al. [36] when they initially created the vision
transformer. These model implementations are then used

FIGURE 16. Basic dataflow of model testing.

for activity recognition in tandem with the other model
implementations as outlined in this section. The interaction
between all files in this implementation can be seen in Fig. 16.

VI. EXPERIMENTS
To compare the typical activity recognition model to the
transformer activity recognition model, we have built mul-
tiple different models and have trained on various subsets
of the UCF 101 dataset, which is one of the largest and
most challenging activity recognition datasets. The UCF
101 dataset is a set of 13,320 human activity videos,
each belonging to one of 101 different categories [40].
Each category contains approximately 130 videos, each
approximately 10 seconds in length. The categories can
be divided into 5 action types: Human-Object Interaction,
Body-Motion Only, Human-Human Interaction, Playing
Musical Instruments, and Sports. Besides, we have conducted
extensive comparative assessments on three widely used
human action recognition datasets that include YouTube
Action, HMDB51, and UCF50 datasets.

In this work, we have conducted different sets of experi-
ments to evaluate the performance of our proposed ViT-ReT
framework. First, we have evaluated the performance gen-
eralization of our proposed method, where we have trained
our model on different scales of data from UCF101 dataset
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and presented the performance in Table 1-4. Next, we have
conducted comparative analysis of our method with the state-
of-the-art human action recognition methods in Table 5-8.
Finally, we have conducted run-time and memory efficiency
analysis experiments to assess the inference efficiency of the
proposed framework in comparison with the state-of-the-art
methods. To assess the performance generalization of the
proposed method on different scales of training data, we have
used a subset of 4, 20, and 50 action categories alongside
the entire 101 action category dataset to show the models’
performance and scalability over datasets of different sizes.
The subset with 4 categories has 478 videos, the subset with
20 categories has 2500 videos, the subset with 50 categories
has 6,567 videos, and the total dataset (101 categories) has
13,320 videos. Models are trained and optimized on each data
subset. The categorical cross entropy loss and accuracy of
the training are tracked and compared in the results section
(Section VII). The video files are subsampled to include only
20 total frames from each video to standardize the data and
reduce the overall model complexity. The frames are then
resized to 224 × 224, which is the standard image size for
ResNet50.

The activity recognition models proposed in this work
are trained using both ResNet50 and ViT as feature
extractors. Both feature extractors are pretrained using
ImageNet 2012. Direct comparisons of ResNet50 and the
vision transformer are not performed as extensive testing of
these two models using ImageNet 2012 was performed by
Dosovitskiy et al. [36]. ResNet50 and the vision transformer
are trained using the same input sequence length and video
frame size.

The LSTM and ReT models are trained on both ResNet50
and ViT features and optimized according to their model
parameters. For the LSTM model, the number of LSTM
layers and the number of LSTM units per layer are changed,
while for the Transformer, the number of Transformer Layers,
the size of the feature embedding, the number of neurons in
the internal dense layer, and the number of attention heads are
all changed. These values are initially assigned using default
values, but the parameter value that optimizes loss for the
current data subset is then used for subsequent tests within
that subset. For example, the LSTMmodel was tested with 1,
2, 4, and 6 layers. If using 2 layers resulted in the smallest loss
while training the 4-category data subset, then when testing
the optimal number of LSTM Units in the 4-category data
subset, 2 LSTM layers would be used. After testing all model
parameters, the values are then set back to the original default
values for the next testing set.

A breakdown of all the tests performed can be seen in
Fig. 17. It shows a list of all tests performed for both the
LSTM and Transformer models, as well as showing that they
are repeated 8 times each. The tests for each model can be
seen explicitly below:

1) LSTM
a) Layers: 1, 2, 4, 6
b) Units: 32, 64, 128, 256, 512

FIGURE 17. An overview of all tests performed.

2) Transformer

a) Layers: 1, 2, 4, 6
b) Embedding: 128, 256, 512, 1024
c) Internal Dense Neurons: 256, 512, 1024
d) Attention: 1, 2, 4, 8, 16

These tests are performed 8 times each. The tests are
performed once for each type of feature extractor, and each
feature extractor is used once for each different subset of
the data. This means the LSTM will be tested 8 times
(4 categories ResNet, 4 categories ViT, 20 categories ResNet,
20 categories ViT, 50 categories ResNet, 50 Categories ViT,
Total dataset ResNet, and Total Dataset ViT), and the ReT
will be tested 8 times in the same manner. This is done to
find the model configurations with the best loss values.

After, the best model configurations will be compared
based upon their loss and accuracy on each of the data subsets
to show accuracy on different dataset complexities. Then the
training time and throughput time will be compared for the
best configurations of the LSTM and ReT. Next, the through-
put time of the ViT-ReT model and the ResNet50-LSTM
model will be compared. Finally, the memory usage of the
two models will be compared.

In our experiments, the model is trained using a shuffled
80 percent of the dataset. After each epoch of training, the
training dataset is shuffled to help fight overtraining on the
training dataset. For throughput testing, each model is tested
by making predictions on the entire data subset at once. It is
worth noticing that, instead of creating a model that would
perform the entire process end-to-end, each stage of model
processing was handled separately. The data is preprocessed
first and saved for later use. Secondly, neither the ReT nor
ViT is implemented in parallel. This means that these tests
do not utilize all the potential benefits of these models,
and the models do not train or predict at the speeds that
are possible if a parallel implementation is created. Parallel
implementations of the transformer are the most obvious
possible extension of this research which serves as a basis to
show the viability of the transformer in activity recognition
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FIGURE 18. Architectural overview of the proposed ViT-ReT framework.

tasks. The overall model flow for these tests can be seen in
Fig. 18.

VII. RESULTS
We have split the experimental results into eight sections.
First, the accuracy of our models with the best loss values
are shown for each of the data subsets. We then present
comparative results of our proposed framework with the
state-of-the-art methods. Afterwards, we present category-
wise accuracy assessment of ViT-ReT framework on different
benchmark datasets. We then present the timing data for
the LSTM and ReT models, comparing their training time
and throughput time for the entire data subset using our
best model configuration. Subsequently, we discuss the
throughput times comparing the ResNet50-LSTM model to
the ViT-ReT model. Next, memory usage of ViT-ReT versus
ResNet50-LSTM is discussed. Afterwards, we provide a run
time comparison of ViT-ReT framework with the state-of-
the-art methods. Finally, the results from all sections are
discussed together. We have performed our testing using
different datasets as discussed in Section VI. We have first
converted the videos to sequences of 20 frames, with each
frame resized to 224 × 224 pixels. All training is performed
with a batch size of 4 over 50 epochs.

A. ACCURACY
For this section, we trained multiple different model config-
urations on different subsets of the UCF 101 dataset, and the
configurations with the best loss values found are used for

TABLE 1. Accuracy with the 4 actions database.

TABLE 2. Accuracy with the 20 actions database.

discussion. First, let us look at the models with the best loss
values for the 4 Action dataset. The categorical cross entropy
loss and accuracy for the optimal LSTM and Transformer
model for each feature extractor is shown in Table 1. Best
configurations:

• ResNet-LSTM: 2 LSTM Layers, 256 Units
• ResNet-ReT: 1 ReT Layer, 128-Dim Embedding,
256 Neurons, 16 Attention Heads

• ViT-LSTM: 1 LSTM Layer, 256 Units
• ViT-ReT: 1 ReT Layer, 128-Dim Embedding, 256 Neu-
rons, 8 Attention Heads

From these results we can see the LSTM and ReT models
perform similarly on small datasets regardless of the feature
extractor used. While the models using LSTM layers had
slightly smaller loss values, there was no change in accuracy
between the LSTM and ReT. There was, some loss in
accuracy when switching from ResNet50 to the ViT, but the
loss in accuracy is the same for both LSTM and ReT. Next,
the results for the 20 Action dataset are shown in Table 2. Best
configurations:

• ResNet-LSTM: 1 Layer, 64 Units
• ResNet-ReT: 1 Layer, 128-Dim Embedding, 1024 Neu-
rons, 16 Attention Heads

• ViT-LSTM: 2 Layers, 256 Units
• ViT-ReT: 1 Layer, 128-Dim Embedding, 256 Neurons,
8 Attention Heads

Here, we begin to see the impact of increased dataset
complexity and size. The loss of both models has increased
by more than 100x their previous loss values when using
ResNet50. However, this has not come with a significant
decline in accuracy. The two models are still able to achieve
close to 100% accuracy with ResNet50. Interestingly, the
loss of each model does not increase significantly, and the
accuracy of each model does not decrease significantly from
the smaller dataset when using the ViT, and even increases
for the LSTM. Next, the results for the 50 Action dataset are
shown in Table 3. Optimal configurations:

• ResNet-LSTM: 1 Layer, 128 Units
• ResNet-ReT: 1 Layer, 128-Dim Embedding, 1024 Neu-
rons, 4 Attention Heads

• ViT-LSTM: 2 Layers, 512 Units
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TABLE 3. Accuracy with the 50 actions database.

TABLE 4. Accuracy with the 101 actions database.

TABLE 5. Quantitative comparative analysis of the proposed ViT-ReT
framework with the state-of-the-art action recognition methods on
YouTube Action dataset.

TABLE 6. Quantitative comparative analysis of the proposed ViT-ReT
framework with the state-of-the-art action recognition methods on
HMDB51 dataset.

• ViT-ReT: 1 Layer, 128-Dim Embedding, 512 Neurons,
2 Attention Heads

As should be expected, further increasing dataset com-
plexity leads to a larger loss and lower accuracies for
both models when given the same training configuration.

However, the ReT and LSTM models are still performing
very good with ResNet50 as a feature extractor. Even
with 50 categories and over 6,500 total samples, the
ResNet50-LSTM and ResNet50-ReT models are still able
to maintain good accuracy. Results in Table 3 indicate
that the accuracies of ViT-LSTM and ViT-ReT models
are close to ResNet50-LSTM and ResNet50-ReT models.
Specifically, ViT-LSTM model is within 3.3% accuracy of
ResNet50-LSTM model and ViT-ReT model is within 1.9%
accuracy of ResNet50-ReT model. Furthermore, ViT-ReT
model is within 3.6% accuracy of ResNet50-LSTM model.
Finally, the total dataset results are shown in Table 4. Optimal
configuration:

• ResNet-LSTM: 2 Layer, 64 Units
• ResNet-ReT: 1 Layer, 128-Dim Embedding, 1024 Neu-
rons, 4 Attention Heads

• ViT-LSTM: 2 Layers, 512 Units
• ViT-ReT: 1 Layer, 128-Dim Embedding, 512 Neurons,
2 Attention Heads

With the final increase in complexity, we continue to
see the same trends as with the other datasets. The LSTM
and ReT perform almost identically on all tasks. Results
in Table 4 indicate that ViT-LSTM model is within 4.4%
accuracy of ResNet50-LSTM model and ViT-ReT model is
within 5.4% accuracy of ResNet50-ReT model. Furthermore,
ViT-ReT model is within 5.4% accuracy of ResNet50-LSTM
model. These results indicate that ViT and ReT models
perform quite close to ResNet50 and LSTM model, and
transformers can be used in place of typical CNN and LSTM
configurations. While the vision transformer did not perform
as well as ResNet50 for some datasets, its accuracy is still
adequate for many tasks and shows promise with a better
implementation.

Now that it has been show that transformers perform with
comparable accuracy to current methods, the next section will
examine their training and prediction speeds.

B. COMPARISON WITH STATE-OF-THE-ART METHODS ON
BENCHMARK DATASETS
The proposedViT-ReT framework is extensively evaluated on
benchmark human action video datasets (including YouTube
action [61], HMDB51 [62], UCF50 [63], and UCF101 [64]
dataset) and the comparative analyses with the state-of-the-
art human activity recognition methods are presented in
Table 5, 6, 7 and 8, respectively, where the best accuracy
score is reported in bold and runner-up in italics. Furthermore,
the training history of the proposed ViT-ReT framework and
other baseline methods on each dataset are shown in Fig. 19.
From Fig. 19, it can be noticed that the proposed ViT-ReT and
ViT-LSTM seem to struggle in the first half of training (in first
40 epochs); however, they perform better in later epochs by
improving training accuracy.

The quantitative results obtained by the proposed ViT-ReT
framework and state-of-the-art methods on YouTube action
dataset are given in Table 5. From the results in Table 5, it can
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FIGURE 19. Training history of the proposed ViT-ReT along with other experimented baseline methods (including ResNet50+LSTM, ViT+LSTM,
and ResNet50+ReT) on four benchmark human action video datasets: (a) YouTube Action dataset, (b) HMDB51 dataset, (c) UCF50 dataset,
and (d) UCF101 dataset.

TABLE 7. Quantitative comparative analysis of the proposed ViT-ReT
framework with the state-of-the-art action recognition methods on UCF50
dataset.

be observed that the proposed ViT-ReT framework attains the
best accuracy of 92.4% as compared to the other state-of-the-
art action recognition methods among which the multi-task
hierarchical clustering [41] method achieves a runner-up
accuracy of 89.7%. Rest of the methods that include
BT-LSTM [42], KFDI [43], Dilated CNN+BiLSTM+RB
[44], Local-global features + QSVM [44], and 3DCNN [46]
obtain accuracies of 85.3%, 79.4%, 89.0%, 82.6%, and
85.2%, respectively. For HMDB51 dataset, which is a

very challenging human action video dataset, the proposed
ViT-ReT dominates the state-of-the-art approaches by
achieving the upmost accuracy as given in Table 6. Results
in Table 6 indicate that the proposed ViT-ReT obtains an
accuracy of 78.4% followed by the runner-up Evidential
deep learning [59] having an accuracy of 77.0%. The
multi-task hierarchical clustering method obtains the lowest
accuracy of 51.7% followed by AdaptFormer [24] having
the second-lowest accuracy of 55.6%. Thus, ViT-ReT
framework provides an improvement in accuracy of 36.7%
over the multi-task hierarchical clustering method for the
HMDB51 dataset. The rest of comparative methods that
include STPP+LSTM [47], Optical flow + multi-layer
LSTM [48], TSN [49], IP-LSTM [50], Deep autoen-
coder [51], TS-LSTM + temporal-inception [52], HAT-
Net [53], Correlational CNN+LSTM [54], STDAN [55],
DB-LSTM+SSPF [56], DS-GRU [57], TCLC [58],
Vit+LSTM [23], Semi-supervised temporal gradient learn-
ing [60], SVT (Linear) [25], SVT (Fine-tune) [25],
SVFormer-S [26], and SVFormer-S [26] obtain accuracies of
70.5%, 72.2%, 70.7%, 58.6%, 70.3%, 69.0%, 74.8%, 66.2%,
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TABLE 8. Quantitative comparative analysis of the proposed ViT-ReT with
the state-of-the-art action recognition methods on UCF101 dataset.

56.5%, 75.1%, 72.3%, 71.5%, 73.7%, 75.9%, 57.8%, 67.2%,
59.7%, and 68.2%, respectively.

The quantitative results assessment with the state-of-
the-art methods on UCF50 dataset are listed in Table 7.
From the listed comparative assessment, it can be noticed
that the ViT-ReT improves the accuracy as compared to
the best existing method, that is, Deep autoencoder [51]
by achieving an accuarcy of 97.1%, whereas the Deep
autoencoder [51] has an accuracy of 96.5%. The local-
global feature+QSVM [45] achieves the lowest accuracy
of 69.4%, whereas the rest of the methods that include
multi-task hierarchical clustering [41], ensemble model
with swarm-based optimization [65], DS-GRU [57], and
Vit+LSTM [23] obtain accuracies of 93.2%, 92.2%, 95.2%,
and 96.1%, respectively. Finally, the performance compari-
son of activity recognition methods on UCF101 dataset is
presented in Table 8. The results listed in Table 8 show that the
ViT-ReT dominates the state-of-the-art methods by achieving
the best accuracy of 94.7% followed by SVT (Fine-tune) [25]
which attains the runner-up accuracy of 93.7%. Multi-task
hierarchical clustering [41] exhibits the lowest accuracy of
76.3% followed by the Long-term temporal convolutions [68]
with the second-lowest accuracy of 82.4%. Rest of the
comparative methods that include saliency-aware 3DCNN
with LSTM [41], Spatiotemporal multiplier networks [67],
Bidiectional-LSTM [69], Videolstm [70], Two-stream con-
vnets [71], TS-LSTM+ temporal-inception [52], hybrid deep
learning [72], SVT (Linear) [25], ConvNet Transformer [27],
SVFormer-S [26], and SVFormer-B [26] attain accuracies of
84.0%, 87.0%, 92.8%, 89.2%, 84.9%, 91.1%, 89.3%, 90.8%,
86.1%, 79.1%, and 86.7, respectively. Overall, based on
the conducted comparative analysis, the proposed ViT-ReT
performs better than the state-of-the-art methods on each
experimented dataset, which shows the effectiveness and

TABLE 9. Timing results with the 4 actions database.

TABLE 10. Timing results with the 20 actions database.

robustness of the proposedViT-ReT over existingmainstream
human action/activity recognition methods.

C. CATEGORY-WISE ACCURACY ASSESSMENT ON
DIFFERENT BENCHMARK DATASETS
This section presents the results obtained by assessing the
proposed ViT-ReT approach using the category-wise accu-
racy metric (capturing the model performance for individual
classes in datasets for the experimental settings).Further,
we have also assessed ViT-ReT using category-wise accuracy
metric for the test sets of each dataset, where the obtained
results are shown in Fig. 20. From the visual results in
Fig. 20, it can be noticed that ViT-ReT obtains around
92% accuracy for all classes of YouTube Action, UCF50,
and UCF101 datasets. For the HMDB51 dataset, which
is one of the challenging human actions video datasets,
our method obtains around 80% accuracy for most of the
classes. The obtained category-wise accuracy validates the
generalization of ViT-ReT for recognizing human actions
in videos. Thus, these extensive experiments on benchmark
human action recognition datasets and the obtained results
confirm the effectiveness and robustness of ViT-ReT for
human action/activity recognition task.

D. CLASSIFICATION TIME
In this section, we show, for each UCF 101 subset, the timing
data for the LSTM and ReT models, comparing their training
time and throughput time for the entire data subset using our
best model configuration. Of note, only timing data using
ResNet50 will be shown. Since the model was implemented
in a way that allows for direct timing of the LSTM or
Transformer layers, it is not necessary to look at both feature
extractors as the processing time of the Transformer and
LSMT will be the same, or very close, for the different
feature extractors. First, we will look at the timing data for
the 4 Action subset. Timing data for this subset can be seen
in Table 9.
With this simple dataset, containing only 478 total videos

and 4 categories, the ReT is faster than the LSTM. The ReT
is able to train 1.30× faster than the LSTM models, and it
is able to process the entire dataset 4.79× faster. This shows
that, for smaller data subsets, the ReT model is significantly
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FIGURE 20. Category-wise accuracy performance of the proposed ViT-ReT framework on the test sets of four experimented datasets:
(a) YouTube Action dataset, (b) HMDB51 dataset, (c) UCF50 dataset, and (d) UCF101 dataset.

TABLE 11. Timing results with the 50 actions database.

faster than the LSTM model. For the next data subset, timing
data can be seen in Table 10.

In the case of the slightly more complex data, 2500 videos
with 20 action categories, the LSTM is marginally faster. The
training of the ReT was 1.17× slower than the LSTM, and it
processed the entire dataset 1.5× slower. Timing results for
the 50-category dataset can be seen in Table 11.
Again, as the complexity increases, 6,567 videos with

50 categories, the training time for the ReT begins to lag
behind the training time of the LSTM, training 1.15× slower.
However, once trained it is able to process the entire dataset in
essentially the same amount of time. While it may take more
time to train the ReT models to the same level as the LSTM
models, once it is trained it runs just as fast as the LSTM
models for a medium complexity dataset. Finally, the total
dataset timing data is shown in Table 12.

With the final andmost complex dataset, 13,320 videos and
101 categories, the ReT performs much better than the LSTM
model. It was able to train 1.29x faster, and able to process the
entire dataset 1.21× faster. For the most complex dataset, the
ReT is simply faster than using a RNN model. These results

TABLE 12. Timing results with the 101 actions database.

show the promise of the ReT for activity recognition tasks.
The ReT performs just as accurately while being just as fast
or faster than the LSTM model in most tasks. In the next
section, a throughput analysis of the entire model structures
is performed, comparing the ViT-ReTmodel to the traditional
ResNet50-LSTM model.

E. TOTAL THROUGHPUT TIME
To measure model throughput, our best performing ReT and
LSTM configurations for the total dataset are used. Once
trained, the ViT is used for feature extraction with the ReT
and ResNet50 is used for the feature extraction with the
LSTM (ViT-ReT and ResNet50-LSTM). These models are
then passed a randomly selected subset of the validation data
to make predictions. The time for each prediction was tracked
and used to calculate throughput. Each video file contains
20 frames. Time data is shown in Table 13.
As shown above, the ViT-ReT model is significantly faster

than ResNet50-LSTM model. In most case, the ViT-ReT is
2× faster than the ResNet50-LSTMmodel. This speedup can
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TABLE 13. Throughput timing results for different number of files.

TABLE 14. Throughput FPS results for different number of files.

TABLE 15. Memory (MB) usage of ViT-ReT vs ResNet50-LSTM.

be seen in Table 14, along with the frames per second (FPS)
for the two models with each different number of files.

These results clearly show that the ViT-ReT model is
significantly faster, in all cases approximately 2× faster, than
the ResNet50-LSTM model. This is a clear example of the
promise transformers have in activity recognition. Regardless
of the complexity of the dataset, the ViT-ReT is faster. It is
important to note that, in the case of the entire model flow,
the ResNet50-LSTM model is still more accurate than the
ViT-ReT model, but with a better implementation of the ViT,
this accuracy disparity would most likely be overcome. In the
next section, the memory used in the creation of both models
is compared.

F. MEMORY
Since it has been shown that the ReT is just as accurate while
being faster than the LSTM, the next metric to consider is the
memory usage of the two different models. To track this, the
process’s memory usagewas tracked before and after creation
of themodels using the best model configuration for each data
subset. The difference in the memory usage measured before
and after each task shows how much memory performing a
certain action with a specific model will take. The memory
data can be seen in Table 15. As is shown, the ViT-ReTmodel
is more memory efficient than the ResNet50-LSTM model
while still being faster. On average, the transformer model
is 1.1x more memory efficient than the ResNet50-LSTM
model. Even using multiple different model configurations,
the transformermodels aremorememory efficient. In the next
section, our results from all testing sections will be discussed
in detail.

G. RUN TIME COMPARISON WITH THE
STATE-OF-THE-ART METHODS
To assess the feasibility of our proposed ViT-ReT for real-
time applications (i.e., real-time human action detection and

FIGURE 21. Run time analysis (in seconds) of our proposed ViT-ReT
framework for features extraction, recurrent analysis of features and
prediction (including both features extraction and recurrent analysis of
features) on both GPU and CPU execution environments.

recognition in video streams), we have computed the runtime
of the proposed ViT-ReT for the human action recognition
task in terms of frames per second (FPS), seconds per frame
(SPF), and in seconds for action/activity prediction. In this
round of experiments, we have tested our proposed ViT-ReT
and the baseline ResNet50-LSTM method on action video
clips having FPS between 25 and 30, both on GPU and CPU
platforms. The obtained results for the proposed ViT-ReT
and the baseline ResNet50-LSTM method for run time in
seconds, FPS, and SPS are depicted in Fig. 21, Fig. 22, and
Fig. 23, respectively. For the better run time assessment of
the proposed ViT-ReT and the baseline ResNet50-LSTM,
we have estimated the run time of specific tasks (i.e., features
extraction, recurrent analysis of features, and prediction
(including both features extraction and recurrent analysis of
features) as well as overall run time in seconds, FPS, and
SPF as shown in Fig. 21, Fig. 22, and Fig. 23, respectively.
From the depicted results, it can be noticed that the proposed
ViT-ReT is 2× faster than the baseline ResNet50+LSTM
method across all experiments on both GPU and CPU. This
speedup can also be observed in task specific run times,
which validate the computational efficiency of the proposed
ViT-ReT over baseline ResNet50-LSTM method.

In addition to comparison with the baseline method
(ResNet50+LSTM), we have also compared the obtained
run time results with the state-of-the-art methods (from
Section VII-B), where the obtained run time comparison
results are presented in Table 16. The run time comparison
results in Table 16 indicate that the proposed ViT-ReT
prevails over the state-of-the-art methods by obtaining the
best FPS and SPF scores on both GPU (FPS of 28 and SPF
of 0.035) and CPU (FPS of 15 and SPF of 0.066) platforms,
followed by the Optical flow + multilayer LSTM [48]
method, which attains the second best FPS and SPF scores
for both GPU (FPS of 25 and SPF of 0.040) and CPU (FPS
of 5.4 and SPF of 0.180) platforms. The Videolstm [70]

VOLUME 11, 2023 72245



J. Wensel et al.: ViT-ReT Neural Networks for Human Activity Recognition in Videos

TABLE 16. Run time analysis of our proposed ViT-ReT framework with the state-of-the-art human action recognition methods.

FIGURE 22. The estimated FPS values of our proposed ViT-ReT framework
for features extraction, recurrent analysis of features, and prediction
(including both features extraction and recurrent analysis of features) on
both GPU and CPU execution environments.

FIGURE 23. The estimated SPF values of our proposed ViT-ReT framework
for features extraction, recurrent analysis of features, and prediction
(including both features extraction and recurrent analysis of features) on
both GPU and CPU execution environments.

method achieves the lowest FPS and SPF of 10.6 and 0.094,
respectively, on the GPU platform followed by TSN [49]
method with the second lowest FPs and SPF of 14 and
0.071, respectively, on the GPU platform. Results in Table 16
indicate that the ViT-ReT provides an improvement in run
time of 38.2% and 36.4%, on average, in terms of FPS and

SPF, respectively, on the GPU platform as compared to the
state-of-the-art human action recognition methods.

Moreover, it is also worth mentioning here that overall
storage requirements of our proposed ViT-ReT is only
28.5 MB (ViT 25 MB and ReT 3.5 MB) and is on
average 1.1× more memory efficient than other baseline
methods (Section VII-F). The trained model with these
storage requirements can be easily run on deviceswith limited
computational resources such as Raspberry pi, arduino,
and other embedded devices. The obtained run time (FPS
and SPF) and model storage requirements validate the
effectiveness and suitability of the proposed ViT-ReT for
human action/activity recognition in resource-constrained
and real-time environments.

H. DISCUSSION
The most striking result is the ability of the ReT model
to maintain similar accuracy with the LSTM model while
being faster and more memory efficient. In all cases, the ReT
model exhibits comparable cross entropy loss and accuracy
to the LSTM model. This makes TNN models ideal not
only for general use, but also for use in edge devices with
limited resources. The transformer, even if not implemented
in parallel, can use resources more efficiently by using
less memory and by using that memory for less time than
a traditional RNN activity recognition model without any
significant drop in performance. Clearly, an implementation
that utilizes any amount of parallelization to perform more
quick matrix multiplication (the backbone of multi-headed
attention) would allow for even better use of resources.
Overall, the transformer has shown itself to be a better and
more versatile model than the traditional RNNs when used
for activity recognition.

For the ViT model, it maintains decent accuracy, but was
significantly behind its deep CNN counterpart in accuracy.
This is most likely due to the specific implementation
of the ViT used and the amount of training performed
for it. As shown by Dosovitskiy et al. [36], it can perform
comparable to other state-of-the-art deep CNN models,
and even more efficiently in some cases. With a better
implementation it is still possible to achieve accuracies close
to or better than state-of-the-art deep CNNs for activity
recognition. However, theViT, when used in conjunctionwith
the ReT, creates a model that is faster and more memory
efficient than a traditional model using ResNet50 and LSTM
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classifiers. This serves to show that, with a better trained
implementation, there is a potential for the ViT to make
significant improvements over current deep CNNs.

VIII. CONCLUSION
Activity recognition is a challenging research area in
computer vision that involves recognizing the actions taken
by humans with different sensors. Contemporary activity
recognition models rely on multiple very dense and com-
plex networks which make these models unsuitable for
resource-constrained edge devices. Deep residual CNNs and
RNN chains, the backbone of modern activity recognition
models, suffer from complexity and speed issues, making
real-time applications or computations in limited resource
environments difficult. There is a need to advance activity
recognition models beyond what currently exists, and the
transformer neural networks (TNNs) provide a propitious
alternative. The TNNs are one of the most promising
neural networks created in the recent years. TNNs have
revolutionized sequence-to-sequence modeling and shown
that it is possible to create very accurate and lightweight
models with little more than matrix multiplications and fully
connected artificial neural networks. This paper sought to
show the potential applications of TNNs beyond sequence-
to-sequence models. It was also shown that there is potential
for Transformers to create significant improvements in
computer vision and activity recognition by replacing both
sets of complex networks that models currently rely on. The
recurrent transformer (ReT), and its extension the vision
transformer (ViT), show promise in these domains, with the
potential to significantly improve on current state-of-the-art
models. Their application into nonsequential and non-time
dependent datasets could prove to make huge improvements
in a wide variety of machine learning tasks.

Our results have shown that the ReT can make predictions
that maintain similar accuracy to traditional RNN classifiers
used for activity recognition while being faster and more
memory efficient. When used in conjunction with a ViT for
feature extraction, there is a significant speedup over current
deep CNN and RNN activity recognition models, as well as a
notable improvement in memory efficiency. For instance, the
proposed ViT-ReT framework achieves a speedup of 2× over
baseline CNN-RNN methods (e.g., ResNet50-LSTM) while
obtaining the same level of accuracy. Moreover, the proposed
ViT-ReT framework outperforms the state-of-the-art methods
on four publicly available human action datasets (that
include YouTube action, UCF50, UCF101, and HMDB51
datasets) in terms of both model precision and runtime. These
significant improvements in model accuracy (up to 52.64%)
and inference time (up to 38.2% on average) offered by our
proposed ViT-ReT validate its effectiveness and efficiency
over existing mainstream human action recognition methods.

IX. FUTURE RESEARCH DIRECTIONS
There are three immediate directions for future research that
extends this paper. The first is creating amore accurate Vision

Transformer and completing Vision Transformer Focused
testing to show its application to the activity recognition
Field. This would show without a doubt the utility of the
Transformer in all fields, not only sequence-to-sequence
problem fields. It can also serve to significantly improve the
model efficiency of activity recognition models. With a better
vision transformer implementation, testing should focus on
speed and memory efficiency while maintaining accuracy,
as is done in this paper. The tests discussed in this paper can
then be extended to including training and testing utilizing
the entire activity recognition model end to end including
all preprocessing and feature extraction to show the overall
improvements made to the activity recognition task by both
the recurrent and vision transformer models.

Second, creating fully parallel implementation of both
the recurrent and vision transformer networks would show
how powerful TNNs can be when they are able to fully
utilize the maximum potential of their architecture. TNNs
are already faster and more memory efficient than the RNN
networks currently in use without a parallel implementation
that makes use of fast matrix multiplication to drastically
increase model speed. With better parallel implementations,
TNN activity recognition models can be used in many
different resource-constrained environments and/or real-time
systems.

Finally, we believe it may be possible to create a TNN
for activity recognition that performs both feature extraction
and classification within a single model, removing the
need for a deep CNN or ViT altogether. This would be
accomplished by using the embedding layers to perform
a pseudo-feature extraction before data processing begins
in the ReT. With the right embedding and preprocessing
steps, it may be possible to achieve similar accuracy without
using CNNs, instead using what may be a significantly
more lightweight and efficient overall model implementation.
This could potentially lead to creating the fastest and most
memory-efficient activity recognition model in existence.
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