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Abstract—With the rapidly growing interest in autonomous
navigation, the body of research on motion planning and col-
lision avoidance techniques has enjoyed an accelerating tea of
novel proposals and developments. However, the complexitygf
new techniques and their safety requirements render the bl
of current benchmarking frameworks inadequate, thus leaving
the need for efficient comparison techniques unanswered. T

work proposes a novel framework based on deep reinforcement

learning for benchmarking the behavior of collision avoidaice

mechanisms under the worst-case scenario of dealing with an

optimal adversarial agent, trained to drive the system intounsafe
states. We describe the architecture and flow of this framewt
as a benchmarking solution, and demonstrate its efficacy via
practical case study of comparing the reliability of two colision
avoidance mechanisms in response to adversarial attempt® t
cause collisions.

Keywords—Autonomous Vehicle, Collision Avoidance, Reinforce-
ment Learning, Benchmarking, Adversarial Al, Al Safety

. INTRODUCTION
It is widely believed that the transportation systems ofifat

In response, a growing number of mitigation techniques
and novel approaches to safe motion planning are proposed,
but each with certain case-specific assumptions and ad hoc
verification procedures. Consequently, quantitative camspn
across such methods is rendered extremely difficult. Ctirren
state of the art includes several attempts towards bendtimgar
of safe behavior in motion planning and collision avoidance
(e.g., [7], [8]), but many of the current frameworks fail to
meet the requirements of new adaptive techniques based on
machine learning [1]. Also, current benchmarking frameksor
do not provide comprehensive and robust mechanisms for
exploration in the complex spaces of undesired states and
trajectories. Prominent approaches in such frameworks are
based on randomized or scenario-based generation of tdsstac
(e.g., [8]), which are highly prone to missing critical IC$ o
other undesired states specific to the mechanism under test.
Another approach in these frameworks relies on computation
ally expensive techniques for reachability analysis ofision
states, which also fail to provide concrete guaranteesitioatr

will be dominated by autonomous vehicles (AVs). A major houndaries of safe operation [9].

motivation for the interest and push towards develo_pment _of Aiming to fill the gap in safety-focused benchmarking, this
AVs stems from the demand for safer transportation. It ISpaper proposes a novel framework based on machine |earning

generally assumed that replacing the intrinsic imperéacti

for benchmarking the reliability of novel techniques unther

of human drivers with expert computational models mayworst-case scenario of interacting with an optimal advéaba
significantly reduce the number of accidents caused by driveagent. This framework adopts the powerful exploration and
error. Yet, development of reliable and robust AV techn@sg optimization performance of deep RL to train adversarial
remains an ongoing challenge, and is actively pursued frorautonomous agents whose goal is to learn optimal navigation

various directions of research and development [1].

policies that aim to drive the system into ICS and other umsaf

Of particular importance is the research on reliable motiorstates. Depending on the parameters and goals of analysis, s

planning and collision avoidance mechanisms. Over the spagbjectives may include direct collision of adversarial mige
of multiple decades, numerous approaches towards this prolith the AV, or exploiting the collision avoidance mechans
lem have been proposed [2], ranging from control theoretigo manipulate the trajectory of AV to either alter and cohtro
formalizations and optimal control methods to potentidtifie jts path, or to indirectly induce collisions between the Awla
and rule-based techniques. More recently, advances inin&ch other objects in the environment.

learning have enabled new data-driven approaches toioallis  Building on this foundation, the main contributions of this
avoidance based on techniques such as imitation learningork include:

[3] and deep Reinforcement Learning (RL) [4]. However, 1) Proposal of a computational framework and pro-
with the growing complexity in their deployment settinggdan cess flow for worst-case benchmarking of collision
mechanisms, providing safety guarantees on these sadution avoidance algorithms, independent of their complexity,
is becoming increasingly challenging [1]. A notable ins&an stochasticity, and even adaptive dynamics;

is the Traffic Collision Avoidance System (TCAS), which 2) Proposal of a deep RL process flow to seamlessly adapt
had satisfied the rigorous safety requirements of the Federa to the system under test, and to overcome the short-
Aviation Authority (FAA) before its wide deployment in comings of fully random or scenario-based exploration
NextGen commercial aircraft. Yet, it was recently shown [5] mechanisms;

to be highly unreliable in the modern high-density airspace 3) Proposal of novel metrics for standardized comparison
to the extent that it may give rise to Inevitable Collision of collision avoidance algorithms;

States (ICS)—for which, regardless of the future trajeetr 4) Demonstration of the practical application and efficacy
a collision eventually occurs. Furthermore, recent redear of the proposed framework via a realistic case study

demonstrates that automatic sense and avoid mechanisms can
be adversarially exploited to manipulate the motion trimjsc
of AVs [6].

of comparing the reliability of two collision avoid-
ance mechanisms in response to intentional collision
attempts.



The remainder of this paper is organized as follows: Section
Il provides the architectural details of our proposed fremk, }
and introduces novel metrics for quantification and congoari |
of motion planning and collision avoidance algorithms.t®ec
Il demonstrates the application of this framework through
a practical case study of comparing the reliability of two ‘>
collision avoidance mechanisms, viz., one based on a deep RL
navigation policy, and another employing a control theoset
mechanism. Finally, Section IV concludes the paper with
remarks on potential directions of further research.

Il. PROPOSEDARCHITECTURE

It is well-established that given sufficient computational
time, deep RL can learn the dynamics and optimal control
policies of many complex settings and environments, includ
ing autonomous navigation [4]. The high-level idea of this
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framework is to employ deep RL methods for end-to-end |
training of an optimal adversarial policy (i.e., mappingstdtes

to actions) for autonomous motion planning. The difference
between this adversarial policy and typical AV policieshiatt |
the latter aims to achieve an optimal motion planning while
avoiding collisions, while the former aims to learn an ogtim
motion planning with the aim otausing intentional direct

or indirect collisions Through suitable choices of optimality
criteria and the corresponding reward (i.e., objectivagfion,
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(c) TRAJECTORY MANIPULATION BY EXPLOITING LIMITED
} REACHABILITY OF SENSE AND AvOID

AV - Autonomous Vehicle
AV: - Autonomous Vehicle under Test
AV,4, - Autonomous Vehicle of Adversary

W

this approach enables the adoption of powerful state-spac._ -
exploration and policy optimization techniques develofed

(b) INDIRECT CoLLISION BY EXPLOITING INEVITABLE COLLISION STATES

deep RL applications. Furthermore, we argue that both th&9- 1. lllustration of adversarial objectives.

training and test-time procedures of adversarial poligies
vide quantitative measures of reliability, which can beduse

B. Objectives
Deep RL algorithms are based on optimization of action

for benchmarking of behaviors in worst-case scenarios. Acpolicies according to defined objectives represented by a
cordingly, our proposed framework is comprised of 4 mainreward functionR(s;,a;), which produces numerical values

componentssimulation environmenbjectives deep RL al-
gorithm, andquantitative metricsdetailed as follows:

A. Simulation Environment

corresponding to the instantaneous value of the actioat
states;. As depicted in Figure 1, adversarial experiments on
an AV-under-test (henceforth referred to 4¥r) can employ

Computational testing of safety in AV necessitates a simulaone of the three choices as the high-level objective of the
tion environment that takes into account the various aspefct adversarial RL agent (designated AY/, ., ), described below:

deployment settings, including (but not limited to) the picg 1)
of the AV, the terrain and road conditions, number and type

of other mobile or static objects in the environment, type

of traffic, etc. Depending on the goals and criteria of the
experiment, the simulation environment may be chosen from
numerous open-source and commercial simulation platforms
such as TORCS [10] and CARLA [11].

Aiming for a general-purpose solution, the proposed frame-
work is designed to be independent of the simulation platfor ~ 2)
and setup. To this end, our proposed framework imposes the
bare minimum requirements on the simulation environment,
which are two-fold: First, the platform should provide an
interface (i.e., API) to enable seamless integration witéa t
deep RL module for external monitoring of state variables
and control of agents; and second, the platform should allow
for external adjustment of simulation flow and speed. The
latter requirement is to eliminate the effect of trainingdan
computational lags on the flow of simulation.

If these requirements are met, the proposed framework can 3)
be seamlessly implemented on any configuration (setup)eof th
environment, such as the choice of two-agent vs. multi-egen
settings, selection of terrains, models of vehicular ptg;sind
any other parameter configured for the experiment.

Direct collision with AVp: This objective aims to
find an optimal navigation policy that leads to direct
collision of AV,4, with AVr. Optimality can be defined
arbitrarily (e.g., minimum time to cause collision). An
instance of corresponding adversarial reward functions
is R = n x C" — d(AVp, AV,4,), whered(.,.) is

an arbitrary distance metric, an@” represents the
value/cost of direct collisions foAV, 4, .

Induced collisionUnlike the former case, this objective
aims to find an optimal navigation policy that ma-
nipulates the trajectory ofAVr such that it collides
with any vehicle or object other thadV,4,. A sim-
ple example of suitable adversarial reward function is
Rt =nr X CVT - d(AVTa AVadv) — Nadv X Cadm where

n. determines whetheAV,.c(r .4} has collided with
another objectCr > 0 is the value ofAV being in a
collision, andC,4, > 0 captures how undesired direct
collisions are forAV,4,.

Trajectory manipulationThe aim of this objective is
to exploit collision avoidance maneuvers [6] 4%/ to
shift its natural trajectory towards an arbitrary alterna-
tive. An instance of corresponding reward function is



TABLE |. EXPERIMENTSETTINGS

Ry = —d(AVr, AVyav) — d(AVr, S'(t))), whereS'(t) Component Configuration
IS the pOSItlon OfA.VT at timet |f It were fO”OW|ng the Environment TORCS, Street 1 track, 3 extra bots
desired adversarial trajectoss/. Objective Direct collision
Our proposed framework allows for arbitrary modification Reward function Ry =1 % 200 — d(AVp, AVaqy)
and definition of reward functions corresponding to any ohe o Deep RL model DDPG - same architecture as [13]

. . . Exploration mechanism Ornstein-Uhlenbeck
the aforementioned objectives, as long as the reward fumgti Training-time metrics | Number of episodes to convergend

satisfy the fundamental requirements of rationality [12]. ;
fy q y [ ] Test-time metrics Number of (simulated) seconds

C. Deep RL Model to collision, Damage incurred
While there are numerous deep RL algorithms with proverpf initial environment configurations. One instance ofrinag-
success [4], not all are suitable for learning autonomows na time metrics is the number of iterations (alternativelgpst or
gation policies. Driving falls within the domain of contious  episodes) to reach the threshold of convergence. Loweesalu
control, meaning that the actuation parameters, such ad-accof this measurement, averaged over repeated experiments,
eration, brake, and steering, can take any value from a mmlind indicates that finding a strategy to jeopardize the safety of
range of real numbers. Many of the algorithms proposed foglgorithm under test requires fewer explorations into ult
deep RL, like Deep Q-Networks (DQNSs) [4], are designeddimensional observations, and may signal a weaker resdien
for problems with discrete and low-dimensional action gsac to the simulated type of hazard. Examples of test-time weetri
It is of course possible to discretize sets of continuous valinclude time or distance to incur damage, for which the lower
ues, but this would lead to explosion of dimensions, thus/alues indicate weaker robustness of the algorithm. Amothe
rendering discrete approaches such as DQN infeasible. Thigst-time metric is level of damage (as measured and reporte
limitation has motivated various efforts towards develepin by the simulator) incurred to each AV: higher damageltd,
of continuous deep RL algorithms, resulting in recent pegpo  indicates higher safety risks, while higher damageAtd, .,
of techniques such as Deep Deterministic Policy Gradiendemonstrates the higher economic cost of intentional kitac
(DDPG), variants of Trust Region Policy Optimization, and which in turn indicates lower safety risks ferV’r. The initial
variants of Asynchronous Advantage Actor Critic (A3C) [4]. environment configuration may include the number, density,
Since the basis of deep RL is function approximationand initial arrangement of AVs that may impact the reliable
with deep neural networks, implementation of such algorgh behavior of the system. For instance, similar to the case of
requires suitable choices (i.e., tuning) of the model aectiire ~ TCAS, the collision avoidance algorithm employed by
and its hyper-parameters. A common approach to this problermay fail to retain its safety criteria when the number of othe
is to begin with an architecture and parameters from sufidess Vvehicles in the environmentis larger than a certain thrigsho
implementations of similar problems. For the purposes othis instance, the maximum number of agents that can safely
this work, some options include those presented in [13]. Arcoexist with AVy can be noted as a measure of capacitive
important consideration in choosing or tuning architeesiis  threshold.
the type of inputs. Conventionally, if the state observatiof I1l.  CASE STuDY
the RL agent are pixel values of the environment, convohatio To demonstrate the application of our framework in pragctice
architectures are considered. If states are numericabrsgct we have compared the resilience of two AVs to adversarial
multi-layer perceptrons may prove most feasible, and testa agents trained for direct collisions. One ageAt/p, is an
are sequential data (e.g., time-domain samples), a retiare AV equipped with motion planning and collision avoidance
chitecture such as Long Short-Term Memory (LSTM) providespolicies obtained from the deep RL approach proposed in [13]
a good starting point for model tuning. The other agentAV),, is the Olethros driver bot [10] that
Another important aspect of deep RL models is the choic&édopts a model-predictive control approach towards néeiga
of exploration mechanism. Multiple studies (e.g., [14]poet  and collision avoidance. Table | describes the configunatio
that the classical-greedy mechanism fails to provide efficient main components for this experiment. We have chosen TORCS
performance in continuous and multi-action scenariosrali-  as the simulation platform of this experiment, as it satisfie
tive approaches include parameter-space noise methatts, suhe necessary requirements noted in Section Il. A further
as NoisyNet [14] and the Ornstein-Uhlenbeck process [13]. advantage of TORCS is the availability of an OpenAl Gym
To preserve the generality and flexibility of our solution, interface to its environment, thus making its integratioithw
this framework allows for arbitrary choice of model type, the TensorFlow deep learning platform easier. We configured
architecture, and parameters. Of course, it is notewotthy t the simulation to run in the defaulBtreet 1 urban road
due to the stochastic nature of deep RL and exploratioenvironment, with 5 AVs comprised oAV and AV,4,, as
processes, different models may yield different resulesnédé, well as a group of three arbitrarily selected autonomous bot
to obtain valid comparisons, it is essential to use the sam&om the defaults of TORCS.
model architecture and configuration across the domain of In training the adversarial agent, we have adopted the DDPG
comparison. model and architecture proposed in [13]: the Adam optimizer
D. Metrics used for learning the neural network parameters with a iegrn

. . rate of 10* and 10 for the actor a iti ively.
We propose three classes of metrics for quantitative bench- nd critic, respectively. For

marking of experiments: those thained from the trainin@ pr ~ i1sample recordings of the simulations are available at #gitaub.com/
cess, those measured at test-time, and numerable parameteshzadanksu/AdvCollision/

(0]




TABLE II. PERFORMANCE OF ADVERSARIAL AGENT(AVERAGED
OVER 100RUNS)

Metric AV AVp (1]
Number of episodeg 470 890

to convergence 5
Optimal return 13900 | 15400 2
Time to collision 22.44s| 51.31s

Damage Incurred 44.7% | 46.4% 3]

regularization, an L2 weight decay @6? is included for the
critic @—function with a discount factory of 0.99. For the 4]
soft target updates, we have used the update factor value o[f
7 = 0.001. The neural networks use the rectified non-linearity
for all hidden layers. The final output layer of the actor is a [5]
t anh layer in order to bound the actions. The neural networks
are comprised of 2 hidden layers, one with 400 units and the
other with 300 units. Actions are not included until the seto  [6]
hidden layer of@. We have trained with mini-batch sizes of
64 and a replay buffer size afs. 71
Table Il presents the training progress of adversarial tagen
for both AV,; and AVp averaged over 100 runs. It can be seen
that AV, allows faster convergence (473 vs 889 episodes),
and has a lower return value thati’p. It is noteworthy that
higher values of minimum time to collision indicate greater
resilience, while higher values of optimal return représen [9]
weaker robustness. Accordingly, these observations atelic
that AV, is more predictable and less complex thaip,

(8]

) ; -~ 10
while AVp, is more resilient but less robust comparediti,, . [10]
Similarly, test-time results presented in Table Il indec#bat
AV, allows collisions at a much sooner time thaip. Thus, [11]

we can conclude that in the selected environment, the motion
planning and collision avoidance algorithm dfi’, is more [12]
resilient to direct collisions than that ofV),.

IV. SUMMARY AND FUTURE DIRECTIONS

We have proposed a process flow and framework that utilizg )
adversarial deep reinforcement learning to measure thee rel
bility of motion planning and collision avoidance mechamss
in autonomous vehicles. We have established the advantagl%é]
of this framework over current benchmarking schemes, which
include flexibility and generality, adaptive probing byitiag  [15]
adversarial policies against the particular system-uektr
sample-efficient and customizable exploration mechanisms
and provision of baseline (i.e., worst-case) measurenfents

benchmarking and comparison among heterogeneous systems. |

The straightforward architecture of the proposed fram&wor
presents a number of potential venues for further reseach.
immediate next step is to apply this framework to prominent
and recently published techniques for motion planning and
collision avoidance, with the aim of creating referencedten
marks for use in relevant research projects. Another priogis
venue is to check the applicability of recent publicatioas)(,
[15]) that claim training under adversarial perturbatiaam
enhance the resilience and robustness of the policy. Hence,
potential mitigation and defense technique may emerge from
investigating the training of adversarial policy and reirke-
ment learning models of collision avoidance in conjunction
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