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Abstract—With the rapidly growing interest in autonomous
navigation, the body of research on motion planning and col-
lision avoidance techniques has enjoyed an accelerating rate of
novel proposals and developments. However, the complexityof
new techniques and their safety requirements render the bulk
of current benchmarking frameworks inadequate, thus leaving
the need for efficient comparison techniques unanswered. This
work proposes a novel framework based on deep reinforcement
learning for benchmarking the behavior of collision avoidance
mechanisms under the worst-case scenario of dealing with an
optimal adversarial agent, trained to drive the system intounsafe
states. We describe the architecture and flow of this framework
as a benchmarking solution, and demonstrate its efficacy viaa
practical case study of comparing the reliability of two collision
avoidance mechanisms in response to adversarial attempts to
cause collisions.
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I. I NTRODUCTION
It is widely believed that the transportation systems of future

will be dominated by autonomous vehicles (AVs). A major
motivation for the interest and push towards development of
AVs stems from the demand for safer transportation. It is
generally assumed that replacing the intrinsic imperfections
of human drivers with expert computational models may
significantly reduce the number of accidents caused by driver
error. Yet, development of reliable and robust AV technologies
remains an ongoing challenge, and is actively pursued from
various directions of research and development [1].

Of particular importance is the research on reliable motion
planning and collision avoidance mechanisms. Over the span
of multiple decades, numerous approaches towards this prob-
lem have been proposed [2], ranging from control theoretic
formalizations and optimal control methods to potential field-
and rule-based techniques. More recently, advances in machine
learning have enabled new data-driven approaches to collision
avoidance based on techniques such as imitation learning
[3] and deep Reinforcement Learning (RL) [4]. However,
with the growing complexity in their deployment settings and
mechanisms, providing safety guarantees on these solutions
is becoming increasingly challenging [1]. A notable instance
is the Traffic Collision Avoidance System (TCAS), which
had satisfied the rigorous safety requirements of the Federal
Aviation Authority (FAA) before its wide deployment in
NextGen commercial aircraft. Yet, it was recently shown [5]
to be highly unreliable in the modern high-density airspace,
to the extent that it may give rise to Inevitable Collision
States (ICS)—for which, regardless of the future trajectories,
a collision eventually occurs. Furthermore, recent research
demonstrates that automatic sense and avoid mechanisms can
be adversarially exploited to manipulate the motion trajectory
of AVs [6].

In response, a growing number of mitigation techniques
and novel approaches to safe motion planning are proposed,
but each with certain case-specific assumptions and ad hoc
verification procedures. Consequently, quantitative comparison
across such methods is rendered extremely difficult. Current
state of the art includes several attempts towards benchmarking
of safe behavior in motion planning and collision avoidance
(e.g., [7], [8]), but many of the current frameworks fail to
meet the requirements of new adaptive techniques based on
machine learning [1]. Also, current benchmarking frameworks
do not provide comprehensive and robust mechanisms for
exploration in the complex spaces of undesired states and
trajectories. Prominent approaches in such frameworks are
based on randomized or scenario-based generation of obstacles
(e.g., [8]), which are highly prone to missing critical ICS or
other undesired states specific to the mechanism under test.
Another approach in these frameworks relies on computation-
ally expensive techniques for reachability analysis of collision
states, which also fail to provide concrete guarantees on critical
boundaries of safe operation [9].

Aiming to fill the gap in safety-focused benchmarking, this
paper proposes a novel framework based on machine learning
for benchmarking the reliability of novel techniques underthe
worst-case scenario of interacting with an optimal adversarial
agent. This framework adopts the powerful exploration and
optimization performance of deep RL to train adversarial
autonomous agents whose goal is to learn optimal navigation
policies that aim to drive the system into ICS and other unsafe
states. Depending on the parameters and goals of analysis, such
objectives may include direct collision of adversarial agent
with the AV, or exploiting the collision avoidance mechanisms
to manipulate the trajectory of AV to either alter and control
its path, or to indirectly induce collisions between the AV and
other objects in the environment.

Building on this foundation, the main contributions of this
work include:

1) Proposal of a computational framework and pro-
cess flow for worst-case benchmarking of collision
avoidance algorithms, independent of their complexity,
stochasticity, and even adaptive dynamics;

2) Proposal of a deep RL process flow to seamlessly adapt
to the system under test, and to overcome the short-
comings of fully random or scenario-based exploration
mechanisms;

3) Proposal of novel metrics for standardized comparison
of collision avoidance algorithms;

4) Demonstration of the practical application and efficacy
of the proposed framework via a realistic case study
of comparing the reliability of two collision avoid-
ance mechanisms in response to intentional collision
attempts.
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The remainder of this paper is organized as follows: Section
II provides the architectural details of our proposed framework,
and introduces novel metrics for quantification and comparison
of motion planning and collision avoidance algorithms. Section
III demonstrates the application of this framework through
a practical case study of comparing the reliability of two
collision avoidance mechanisms, viz., one based on a deep RL
navigation policy, and another employing a control theoretics
mechanism. Finally, Section IV concludes the paper with
remarks on potential directions of further research.

II. PROPOSEDARCHITECTURE
It is well-established that given sufficient computational

time, deep RL can learn the dynamics and optimal control
policies of many complex settings and environments, includ-
ing autonomous navigation [4]. The high-level idea of this
framework is to employ deep RL methods for end-to-end
training of an optimal adversarial policy (i.e., mapping ofstates
to actions) for autonomous motion planning. The difference
between this adversarial policy and typical AV policies is that
the latter aims to achieve an optimal motion planning while
avoiding collisions, while the former aims to learn an optimal
motion planning with the aim ofcausing intentional direct
or indirect collisions. Through suitable choices of optimality
criteria and the corresponding reward (i.e., objective) function,
this approach enables the adoption of powerful state-space
exploration and policy optimization techniques developedfor
deep RL applications. Furthermore, we argue that both the
training and test-time procedures of adversarial policiespro-
vide quantitative measures of reliability, which can be used
for benchmarking of behaviors in worst-case scenarios. Ac-
cordingly, our proposed framework is comprised of 4 main
components:simulation environment, objectives, deep RL al-
gorithm, andquantitative metrics, detailed as follows:
A. Simulation Environment

Computational testing of safety in AV necessitates a simula-
tion environment that takes into account the various aspects of
deployment settings, including (but not limited to) the physics
of the AV, the terrain and road conditions, number and type
of other mobile or static objects in the environment, type
of traffic, etc. Depending on the goals and criteria of the
experiment, the simulation environment may be chosen from
numerous open-source and commercial simulation platforms,
such as TORCS [10] and CARLA [11].

Aiming for a general-purpose solution, the proposed frame-
work is designed to be independent of the simulation platform
and setup. To this end, our proposed framework imposes the
bare minimum requirements on the simulation environment,
which are two-fold: First, the platform should provide an
interface (i.e., API) to enable seamless integration with the
deep RL module for external monitoring of state variables
and control of agents; and second, the platform should allow
for external adjustment of simulation flow and speed. The
latter requirement is to eliminate the effect of training and
computational lags on the flow of simulation.

If these requirements are met, the proposed framework can
be seamlessly implemented on any configuration (setup) of the
environment, such as the choice of two-agent vs. multi-agent
settings, selection of terrains, models of vehicular physics, and
any other parameter configured for the experiment.
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Fig. 1. Illustration of adversarial objectives.

B. Objectives
Deep RL algorithms are based on optimization of action

policies according to defined objectives represented by a
reward functionR(st, at), which produces numerical values
corresponding to the instantaneous value of the actionat at
statest. As depicted in Figure 1, adversarial experiments on
an AV-under-test (henceforth referred to asAVT ) can employ
one of the three choices as the high-level objective of the
adversarial RL agent (designated byAVadv), described below:

1) Direct collision with AVT : This objective aims to
find an optimal navigation policy that leads to direct
collision ofAVadv with AVT . Optimality can be defined
arbitrarily (e.g., minimum time to cause collision). An
instance of corresponding adversarial reward functions
is Rt = η × C′

− d(AVT , AVadv), where d(., .) is
an arbitrary distance metric, andC′ represents the
value/cost of direct collisions forAVadv.

2) Induced collision: Unlike the former case, this objective
aims to find an optimal navigation policy that ma-
nipulates the trajectory ofAVT such that it collides
with any vehicle or object other thanAVadv. A sim-
ple example of suitable adversarial reward function is
Rt = ηT ×CT − d(AVT , AVadv)− ηadv ×Cadv, where
ηx determines whetherAVx∈{T,adv} has collided with
another object,CT > 0 is the value ofAVT being in a
collision, andCadv > 0 captures how undesired direct
collisions are forAVadv.

3) Trajectory manipulation: The aim of this objective is
to exploit collision avoidance maneuvers [6] ofAVT to
shift its natural trajectory towards an arbitrary alterna-
tive. An instance of corresponding reward function is
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Rt = −d(AVT , AVadv)− d(AVT , S
′(t))), whereS′(t)

is the position ofAVT at timet if it were following the
desired adversarial trajectoryS′.

Our proposed framework allows for arbitrary modification
and definition of reward functions corresponding to any one of
the aforementioned objectives, as long as the reward functions
satisfy the fundamental requirements of rationality [12].

C. Deep RL Model
While there are numerous deep RL algorithms with proven

success [4], not all are suitable for learning autonomous navi-
gation policies. Driving falls within the domain of continuous
control, meaning that the actuation parameters, such as accel-
eration, brake, and steering, can take any value from a bounded
range of real numbers. Many of the algorithms proposed for
deep RL, like Deep Q-Networks (DQNs) [4], are designed
for problems with discrete and low-dimensional action spaces.
It is of course possible to discretize sets of continuous val-
ues, but this would lead to explosion of dimensions, thus
rendering discrete approaches such as DQN infeasible. This
limitation has motivated various efforts towards development
of continuous deep RL algorithms, resulting in recent proposal
of techniques such as Deep Deterministic Policy Gradient
(DDPG), variants of Trust Region Policy Optimization, and
variants of Asynchronous Advantage Actor Critic (A3C) [4].

Since the basis of deep RL is function approximation
with deep neural networks, implementation of such algorithms
requires suitable choices (i.e., tuning) of the model architecture
and its hyper-parameters. A common approach to this problem
is to begin with an architecture and parameters from successful
implementations of similar problems. For the purposes of
this work, some options include those presented in [13]. An
important consideration in choosing or tuning architectures is
the type of inputs. Conventionally, if the state observations of
the RL agent are pixel values of the environment, convolutional
architectures are considered. If states are numerical vectors,
multi-layer perceptrons may prove most feasible, and if states
are sequential data (e.g., time-domain samples), a recurrent ar-
chitecture such as Long Short-Term Memory (LSTM) provides
a good starting point for model tuning.

Another important aspect of deep RL models is the choice
of exploration mechanism. Multiple studies (e.g., [14]) report
that the classicalǫ-greedy mechanism fails to provide efficient
performance in continuous and multi-action scenarios. Alterna-
tive approaches include parameter-space noise methods, such
as NoisyNet [14] and the Ornstein-Uhlenbeck process [13].

To preserve the generality and flexibility of our solution,
this framework allows for arbitrary choice of model type,
architecture, and parameters. Of course, it is noteworthy that
due to the stochastic nature of deep RL and exploration
processes, different models may yield different results. Hence,
to obtain valid comparisons, it is essential to use the same
model architecture and configuration across the domain of
comparison.

D. Metrics
We propose three classes of metrics for quantitative bench-

marking of experiments: those obtained from the training pro-
cess, those measured at test-time, and numerable parameters

TABLE I. EXPERIMENT SETTINGS
Component Configuration
Environment TORCS, Street 1 track, 3 extra bots
Objective Direct collision
Reward function Rt = η × 200 − d(AVT , AVadv)
Deep RL model DDPG - same architecture as [13]
Exploration mechanism Ornstein-Uhlenbeck
Training-time metrics Number of episodes to convergence

Test-time metrics
Number of (simulated) seconds
to collision, Damage incurred

of initial environment configurations. One instance of training-
time metrics is the number of iterations (alternatively, steps or
episodes) to reach the threshold of convergence. Lower values
of this measurement, averaged over repeated experiments,
indicates that finding a strategy to jeopardize the safety of
algorithm under test requires fewer explorations into multi-
dimensional observations, and may signal a weaker resilience
to the simulated type of hazard. Examples of test-time metrics
include time or distance to incur damage, for which the lower
values indicate weaker robustness of the algorithm. Another
test-time metric is level of damage (as measured and reported
by the simulator) incurred to each AV: higher damage toAVT

indicates higher safety risks, while higher damage toAVadv

demonstrates the higher economic cost of intentional attacks,
which in turn indicates lower safety risks forAVT . The initial
environment configuration may include the number, density,
and initial arrangement of AVs that may impact the reliable
behavior of the system. For instance, similar to the case of
TCAS, the collision avoidance algorithm employed by anAVT

may fail to retain its safety criteria when the number of other
vehicles in the environment is larger than a certain threshold. In
this instance, the maximum number of agents that can safely
coexist with AVT can be noted as a measure of capacitive
threshold.

III. C ASE STUDY

To demonstrate the application of our framework in practice,
we have compared the resilience of two AVs to adversarial
agents trained for direct collisions. One agent,AVD, is an
AV equipped with motion planning and collision avoidance
policies obtained from the deep RL approach proposed in [13].
The other agent,AVM , is the Olethros driver bot [10] that
adopts a model-predictive control approach towards navigation
and collision avoidance. Table I describes the configuration of
main components for this experiment. We have chosen TORCS
as the simulation platform of this experiment, as it satisfies
the necessary requirements noted in Section II. A further
advantage of TORCS is the availability of an OpenAI Gym
interface to its environment, thus making its integration with
the TensorFlow deep learning platform easier. We configured
the simulation to run in the defaultStreet 1 urban road
environment, with 5 AVs comprised ofAVT and AVadv, as
well as a group of three arbitrarily selected autonomous bots
from the defaults of TORCS.1

In training the adversarial agent, we have adopted the DDPG
model and architecture proposed in [13]: the Adam optimizeris
used for learning the neural network parameters with a learning
rate of104 and103 for the actor and critic, respectively. For

1Sample recordings of the simulations are available at https://github.com/
behzadanksu/AdvCollision/
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TABLE II. PERFORMANCE OF ADVERSARIAL AGENT(AVERAGED

OVER 100RUNS)
Metric AVM AVD

Number of episodes
470 890

to convergence
Optimal return 13900 15400
Time to collision 22.44s 51.31s
Damage Incurred 44.7% 46.4%

regularization, an L2 weight decay of102 is included for the
critic Q−function with a discount factorγ of 0.99. For the
soft target updates, we have used the update factor value of
τ = 0.001. The neural networks use the rectified non-linearity
for all hidden layers. The final output layer of the actor is a
tanh layer in order to bound the actions. The neural networks
are comprised of 2 hidden layers, one with 400 units and the
other with 300 units. Actions are not included until the second
hidden layer ofQ. We have trained with mini-batch sizes of
64 and a replay buffer size of106.

Table II presents the training progress of adversarial agent
for bothAVM andAVD averaged over 100 runs. It can be seen
that AVM allows faster convergence (473 vs 889 episodes),
and has a lower return value thanAVD. It is noteworthy that
higher values of minimum time to collision indicate greater
resilience, while higher values of optimal return represent
weaker robustness. Accordingly, these observations indicate
that AVM is more predictable and less complex thanAVD,
while AVD is more resilient but less robust compared toAVM .
Similarly, test-time results presented in Table II indicate that
AVM allows collisions at a much sooner time thanAVD. Thus,
we can conclude that in the selected environment, the motion
planning and collision avoidance algorithm ofAVD is more
resilient to direct collisions than that ofAVM .

IV. SUMMARY AND FUTURE DIRECTIONS
We have proposed a process flow and framework that utilize

adversarial deep reinforcement learning to measure the relia-
bility of motion planning and collision avoidance mechanisms
in autonomous vehicles. We have established the advantages
of this framework over current benchmarking schemes, which
include flexibility and generality, adaptive probing by training
adversarial policies against the particular system-under-test,
sample-efficient and customizable exploration mechanisms,
and provision of baseline (i.e., worst-case) measurementsfor
benchmarking and comparison among heterogeneous systems.

The straightforward architecture of the proposed framework
presents a number of potential venues for further research.An
immediate next step is to apply this framework to prominent
and recently published techniques for motion planning and
collision avoidance, with the aim of creating reference bench-
marks for use in relevant research projects. Another promising
venue is to check the applicability of recent publications (e.g.,
[15]) that claim training under adversarial perturbationscan
enhance the resilience and robustness of the policy. Hence,a
potential mitigation and defense technique may emerge from
investigating the training of adversarial policy and reinforce-
ment learning models of collision avoidance in conjunction.
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