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Abstract—Technological advancements in communications and
embedded systems have led to the proliferation of wirelesgssor
networks (WSNSs) in a wide variety of application domains.
One commonality across all WSN application domains is the
need to meet application requirements (e.g., lifetime, rébility,
etc.). Many application domains require that sensor nodes
be deployed in harsh environments (e.g., ocean floor, active
volcanoes), making these sensor nodes more prone to failgte
Unfortunately, sensor node failures can be catastrophic fo
critical or safety related systems. To improve reliability in

additional cost. Studies indicate that sensors (e.g., ¢eatpre
and humidity sensors) in a sensor node have comparatively
higher fault rates than other components (e.g., processors
transceivers) [3][4]. Fortunately, sensors are cheap dddhg
spare sensors contribute little to the individual sensatefs
cost.

Even though FT is a well studied research field [5][6][7][8],
fault detection and FT for WSNs are relatively unstudied.

such systems, we propose a fault-tolerant sensor node modelAdditionally, fault detection and FT for WSNs have added

for applications with high reliability requirements. We develop
Markov models for characterizing WSN reliability and MTTF
(Mean Time to Failure) to facilitate WSN application-specfic
design. Results show that our proposed fault-tolerant modecan
result in as high as a 100% MTTF increase and approximately a
350% improvement in reliability over a non-fault-tolerant WSN.
Results also highlight the significance of a robust fault detction
algorithm to leverage the benefits of fault-tolerant WSNs.

Index Terms—Fault-Tolerance, reliability, Markov modeling,
wireless sensor networks

I. INTRODUCTION AND MOTIVATION

complexities due to varying FT requirements across differe
applications. For instance, mission critical applicaside.g.,
security and defense systems) have very high reliability
requirements whereas non-mission critical applicatiang.(
ambient conditions monitoring applications) typicallyvea
relatively low reliability requirements. To the best of our
knowledge there exists no sensor node model to provide
better reliability for such critical applications. Furthgore,
applications are designed to operate reliably for a certain
period of time (i.e., WSN applications typically have sfiieci
lifetime requirements). Unfortunately, literature proes

‘Wireless sensor networks (WSNs) consist of spatiallyo rigorous mathematical model with insights into WSN
distributed autonomous sensor nodes that collaborate Wigkability and lifetime. Finally, fault detection and FTawe
each other to perform an application task. WSN senspgen studied in isolation and their synergistic relatigmétas

nodes are typically mass produced and are often deploygst been investigated in the context of WSNS.
in unattended and hostile environments making them mores ;. main contributions in this paper are:

susceptible to failures than other systems [1]. Additibnal

manual inspection of faulty sensor nodes after deployment i « We investigate the synergy of fault detection and FT for

typically impractical. Nevertheless, many WSN applicatio
are mission-critical, requiring continuous operationuhin
order to meet application requirements reliably, WSNs irequ
fault detection and fault-tolerance (FT) mechanisms.

Fault detection encompasses distributed fault detection
(DFD) algorithms which identify faulty sensor readingsttha

indicate faulty sensors. DFD algorithms typically use &xg

network traffic to identify sensor failures and therefore
do not incur any additional transmission cost. A fault e

detection algorithm’siccuracy signifies the algorithm’s ability

WSNs and propose an FT sensor node model consisting
of duplex sensors (i.e., one active sensor and one inactive
spare sensor), which exploits this synergy between fault
detection and FT. Whereas sensors may employ N-
modular redundancy (e.g., triple modular redundancy
(TMR) is a special case of N-modular redundancy) [2],
we propose a duplex sensor model to minimize the
additional cost for our FT model.

To the best of our knowledge, we for the first time develop
a Markov model for characterizing WSN reliability and
MTTF. Our Markov modeling facilitates WSN design by

to accurately identify faults. Though fault detection feelp
in isolating faulty sensors, WSNs require FT to reliably
accomplish application tasks.

One of the most prominent FT techniques is to add hardware
and/or software redundancy to the system [2]. However,
WSNs are different from other systems as they have stringent
constraints and the added redundancy for FT must justify the

enabling WSN designers to determine the exact number
of sensor nodes required to meet the application’s lifetime
and reliability requirements. Our Markov modeling
provides an insight on the type of sensor nodes (duplex
or simplex) feasible for an application to meet the
application’s requirements.



Il. RELATED WORK

Although general FT is a well-studied research field
[51[6][718], little work exists in WSN-specific fault detgion
and FT. Jiang [9] proposed a DFD scheme that detected
faulty sensor nodes by exchanging data and mutually testing A(1-c)
among neighboring nodes. Jian-Liang et al. [10] proposed
a weighted median fault detection scheme (WMFDS) that
used spatial correlations among the sensor measurements
(e.g., temperature, humidity). Lee et al. [11] presented a
DFD algorithm that identified faulty sensor nodes based on Fig. 1. Sensor node Markov model.
comparisons between neighboring sensor nodes’ data. The
DFD algorithm used time redundancy to tolerate transieftt Fault-Tolerance Parameters
faults in sensing and communication. Khilar et al. [12] The FT parameters leveraged in our Markov model are
proposed a probabilistic approach to diagnose interntittefbverage factor and sensor failure probability. The coverage
faults in WSNs. The simulation results indicated that th@ctor ¢ is defined as the probability that the faulty active
accuracy of the DFD algorithm increased as the numbegnsor is correctly diagnosed, disconnected, and replaged
of diagnostic rounds increased (each round comprised ®food inactive spare sensor. Thestimation is critical in an
exchanging measurements with the neighboring nodes). FT WSN model and can be determined by:

Further work exists in WSN fault detection. Ding et al. [13]
proposed two algorithms: faulty sensor identification aadtf C=Ck —Ce 1)

tolerant event boundary detection. Their algorithms atereid wherec;, denotes the accuracy of the fault detection algorithm

thatl dbOth thet faukl)ty senlsors da_md sens(cj)_r in E[?]e tzveni;m;e?mndiagnosing faulty sensors angd denotes the probability
could generate abnormal readings (readings that dev "of an unsuccessful replacement of the identified faulty @ens

a typical application-specific range). Krishnamachari ket a .
[14] proposed a distributed, Bayesian algorithm for sensgrIth the good spare sensor. depends upon the sensor

: . . . witching circuitry and is usually a constant anddepends
fault detection and correction that exploned the npuoatth on the average number of sensor node neighib the
measurement errors due to faulty equipment are likely to gg

uncorrelated. Wu et al. [15] presented a fault detectiomiseh obability of sensor fallur@_[Q][lo][13][14]. .

. : : The sensor failure probability can be represented using an
in which the fusion center (the node that aggregated daé)% onential distribution with failure ratg, over the period
from different nodes) attempted to identify faulty sensodes P § P °

: L the periodt, signifies the time over which the sensor failure
through temporal sequences of received local decisiomgus i, , e .
gt : ) probability p is specified) [18]. Thus, we can write:
a majority voting technique.

In the area of FT for WSNs, Koushanfar et al. [4] proposed p=1—exp(—Asts) (2)
an FT scheme that provided back up for one type of sensor
using another type of sensor. However, they did not propoBe Fault-Tolerant Sensor Node Model
any FT model. Clouqueur et al. [16] presented algorithmswe propose an FT duplex sensor node model consisting
for collaborative target detection in the presence of faulbf one active sensor (such as a temperature sensor) and one
sensors. Chiang et al. [17] built and evaluated systent-levigactive spare sensor. The inactive sensor becomes actiye o
test interfaces for remote testing, repair, and softwvaggages once the active sensor is declared faulty by the fault detect
for sensor nodes. They added a test interface module (TIM)dRyorithm. Fig 1 shows the Markov model for our proposed
provide the testing function and experimental resultsdattid FT sensor node. The states in the Markov model represent the
that the TIM with double, triple, and quadruple redundangyumber of good sensors. The differential equations desgrib

increased the WSN’s availability. the sensor node duplex Markov model are:
Even though DFD algorithms were proposed in literature for ,
detecting sensor faults, the fault detection was not lgestdao Py(t) = —MPa(t)
provide FT. Additionally, there does not exist any modelfdr P (t) = X\cPa(t) — M\Pi(t)
sensor nodes, nor does there exist any model for charantgriz P(; ) = M(1—c)Po(t) + APy (1) 3)

WSN FT metrics such as reliability and MTTF.
where P;(t) denotes the probability that the sensor node will
1. FAULT-TOLERANT MARKOV MODELS be in statei at time ¢ and P, (¢) represents the first order
derivative of P,(t). A; represents the failure rate of an active
In this section, we present our proposed Markov moddismperature sensor and the rate at which recoverabledailur
for FT WSNs. Our Markov models are comprehensive aratcurs isc);. The probability that the sensor failure cannot
encompass the sensor node, a WSN cluster (a group of sertmorecovered il — ¢), and the rate at which unrecoverable
nodes), and the overall WSN. failure occurs is(1 — ¢)\;.
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Fig. 2. WSN cluster Markov model.

Solving (3) with the initial conditions?(0) = 1, P1(0) = Rin+ DA 01y (% mm—i—l)/igd(ka
0, and Py (0) = 0, the reliability of the duplex sensor node is -
given by:
Rs,(t) = 1—Py(t)
= e M pente M (4)

The MTTF of the duplex sensor system is Fig. 3. WSN cluster Markov model with three states.

MTTF,, = / R, (t)dt
10 c WSN cluster reliability is given as:
YR ©)
o Re(t) = 1Py, (t)
The average failure rate of the duplex sensor system depends = e Frmint2) X (kpmin+1t 4
on k (since the fault detection algorithm’s accuracy depends (Kmin + 2)As » o~ (FminT2)X0 (ki 410
on k (Section Ill-A)) and is given by: min albmin 1) +
( min T 1) d(kmin) — (kmin + 2)/\sd(kmm+1)
Aeat = TrFE— ®) (bnsin + Dsytt e Err D atnit
sa(k) (kmzn + 2)A d(kmin+1) — (kmzn + 1)Asd(kmm)
C. Fault-Tolerant WSN Cluster Model The MTTE of the WSN cluster is:
A typical WSN consists of many clusters and we assume .
for our model that all nodes in a cluster are neighbors to each MTTF, = / Re(t)dt
other. If the average number of nodes in a clusten,ishen 0
the average number of neighbor nodes per sensor ndde-is _ 1 +
n—1. Fig. 2 depicts our Markov model for a WSN cluster. We (km + 2)As (b +1)
assume that a cluster fails (i.e., fails to perform its assij 1 n
application task) if the number of alive (non-faulty) senso (B 4+ DAyt — B+ 2)Xsy (ke +1)
nodes in the cluster reduceskg;,,. The differential equations (km + 2) sy (ko t1)
describing the WSN cluster Markov model are: = 573 9)
(km + 2)(/€m + 2))‘sd(km)/\sd(km+1) — (km + 1) /\sd(km)
,P”(t) = “Asym-nFalt) where we denoté,,;, by k,, in (9) for conciseness. The
P,_1(t) = nAgm-1)Pa(t) = (n = DAs,n—2)Pa-1(t)  average failure rate of the cluster(n) depends on the average
. number of nodes in the cluster at deployment time and is
, ' given by:
Pp @) = (Bmin + DAsy(kmin) Pomin+1(0) ) \ 1 10
) T MTTF.(n) (10)

wherel,, (n—1), Asy(n—2), andAg, (k... represent the duplex
sensor node failure rate (6) when the average number [5)f
neighbor sensor nodes ate- 1, n—2, andk,,;., respectively.
For mathematical tractability and closed form solution, we A typical WSN consists ofV = ng/n clusters wheren,
analyze a special (simple) case of the above WSN clusti#notes the total number of sensor nodes in the WSN and
Markov model where: = k,,,;,,+2, which reduces the Markov n denotes the average number of nodes in a cluster. Fig. 4
model to three states as shown in Fig. 3. depicts our WSN Markov model. We assume that the WSN
Solving (7) forn = k.., + 2 with the initial conditions fails to perform its assigned task when the number of alive
Py, .42(0) = 1, Py, +1(0) = 0, and P, , (0) = 0, the clusters reduces t,,;,,. The differential equations describing

Fault-Tolerant WSN Model
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Fig. 4. 'WSN Markov model.

the WSN Markov model are: 2000 ;
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Py @) = (Nmin + 1) Acn) PN t1(t) (11)

where A,y represents the average cluster failure rate

when the cluster contains sensor nodes at deployment tit _
Solving (11) forN = N,,.;», + 2 with the initial condition: 8 02 03 0L eneor alure Prosabity p | 08 08 0

Py,,..+2(0) = 1, Py, 41(0) = 0, and Py, (0) = 0, the

WSN reliability is given as:
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Fig. 5. MTTF (days) for an FT and a non-FT (NFT) sensor node.

Ruysn(t) = 1-Pn,,,(t) large k values. Fig. 5 also compares the MTTF for an FT
= e Wmint2)Acemt 4 (Nmin +2)Ae(ny X sensor node when = 1 V k,p representing the ideal case

(i.e., the fault detection algorithm is perfect and the taul

sensor is identified and replaced perfectly for any number of

where ),y represents the average cluster failure rate (10pighbors and sensor failure probability). Whereas 1 for
when the cluster contains sensor nodes at deployment time€Xisting fault detection algorithms, however, comparisoth

{e—wmml)xc(n)t — e~ Nmint2hemt]  (12)

The WSN MTTF whenN = N,,,;, + 2 is: ¢ = 1 provides insight into how the fault detection algorithm’s
0o accuracy affects the sensor node’'s MTTF. Fig. 5 shows tleat th
MTTF s, = / Rysn(t) dt MTTF for an FT sensor node with= 1 is always greater than
0 the FT sensor node with# 1. We observe that the MTTF for
= 1 Nonin + 2 —1(13) both the NFT and FT sensor node decreasep mEreases,
(Nmin +2)Ac(n) ~ Nin +1 however, the FT sensor node maintains better MTTF than the
IV. RESULTS NFT sensor node for ajp values.

We use the SHARPE Software Package [19] to obtain ourWe calculated the percentage MTTF improvement gained
FT sensor node, WSN cluster, and WSN model results. W¢ an FT sensor node over an NFT sensor node for
assumer, = 0 in (1) (i.e., once a faulty sensor is identifieddifferent values ofp. We observed that the MTTF percentage
the faulty sensor is replaced by a good spare sensor pgrfedfnprovement for an FT sensor node decreaseg iasreases
and thusc = ¢, in (1)). We use typicale, values for Whenc # 1. The percentage MTTF improvement for an FT
our analysis that represeny, for different fault detection Sensor node withk = 5 and k = 10 are 86% and 96%,
algorithms [9][10][13][14]. We compare the MTTF for FT and'eéspectively, fopp = 0.1. The MTTF percentage improvement
non-FT (NFT) sensor node, WSN cluster, and WSN modeR.0ps to 0.9% and 1.3%, respectively, for= 0.99. The MTTF
The MTTF also reflects the system reliability (i.e., a great@ercentage improvement for an FT sensor node over an NFT
MTTF implies a more reliable system). sensor node is 100% on average wheas 1, thus highlighting

Fig. 5 depicts the MTTF for an NFT and FT sensor nod&e importance of a robust fault detection algorithm.

(based on our sensor node duplex model Section IlI-B}for Fig. 6 depicts the MTTF for NFT and FT WNS clusters
values of 5, 10, and 15 versus the sensor failure probabilitgrsusp whenk,,,;,, = 4 (we observed similar trends for other

p whent, in (2) is 100 days [13][14]. The FT results arek,,;, values). The FT WSN cluster consists of sensor nodes
obtained for different because a fault detection algorithm’swith duplex sensors (Section IlI-B) and the NFT WSN cluster
accuracy, and thus, depends uport. The results show that consists of NFT non-duplex sensor nodes. The figure shows
the MTTF for an FT sensor node improves with increasintpe results for two WSN clusters that contain on average

k. However, the MTTF shows negligible improvement wheh,,.;,, + 2 andn = k..., + 5 sensor nodes at deployment
k = 15 over k = 10 as the fault detection algorithm’stime. The figure reveals that the FT WSN cluster's MTTF is
accuracy improvement gradient (slope) decreases betweensiderably greater than the NFT WSN cluster’s MTTF for
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k'rnin =4.

(and sensor nodes) and can survive more cluster failureséef
both cluster systemsn(= k,in + 2 andn = k,,;, + 5). reaching the failed state\{ = 0) as compared to WSNs with
Fig. 6 also compares the MTTF for FT WSN clusters wheN = N,;, + 2.
¢ = 1 with ¢ # 1 and shows that the MTTF for FT WSN We observed the percentage MTTF improvement for FT
clusters withc = 1 is always better than the FT WSN cluster§VSNs over NFT WSNs for two cases wheke= N,,;,, + 2
with ¢ # 1. We point out that both the NFT and FT WSNand N = N,,;, + 5. The MTTF percentage improvement for
clusters withn > k,..;, have redundant sensor nodes and cdfl WSNs withN = N,,;. +2, ¢ # 1, is 88% forp = 0.1 and
inherently toleraten — k,,,;,, sensor node failures. The WSNdrops to 3.3% fop = 0.99. Similarly, the MTTF percentage
cluster withn = k,,;, + 5 has more redundant sensor nodesnprovement for FT WSNs withV' = N,,,;, + 5, ¢ # 1, is
than the WSN cluster witm = k,,;, + 2 and thus has a 88% forp = 0.1 and drops to 3.3% fop = 0.99. We observe
comparatively greater MTTF. that the MTTF improvement for FT WSNs with= 1 is 100%

We observed the percentage MTTF improvement of Fqn average for alp values and is greater than the FT WSNs
WSN clusters as compared to NFT WSN clusters for twaith ¢ # 1. The MTTF percentage improvement for FT WSNs
cluster systems containing = ki, + 2 andn = kyin +5 With N = Ny;,, + 5 over FT WSNs wWithV = Ny, + 2 S
sensor nodes. The MTTF percentage improvement for th@% on average.

FT WSN cluster withn = kpm + 2, ¢ # 1, is 83% for We present example reliability calculations using our
p = 0.1 and drops to 2.3% fop = 0.99. Similarly, the Markov models. For an NFT sensor node reliability
percentage MTTF improvement for the FT WSN cluster witBalculation, sensor failure rate\; = (—1/100)In(1 —

n = kmin +5, ¢ # 1, is 88% forp = 0.1 and drops to 0.05) = 5.13 x 10~ failures/day). SHARPE give®; (t) =
2.5% forp = 0.99. The percentage MTTF improvement fore=>13*1° "t and sensor node reliabilityz,(t) = P (t).
the two cluster systems is 100% on average whenl. We Evaluating R.(t) at ¢t = 100 gives R,(t)|t=100 =
observed that the MTTF percentage improvement for the T >13%107"x100 — ( 94999,

WSN cluster withn = ki + 5 overn = kpin + 2 is 103% For an FT sensor node reliability calculation whegt 1,

on average. different reliability results are obtained for differelhbecause

Fig. 7 depicts the MTTF for two WSNs containing orthe fault detection algorithm’s accuracy and coverageofact
averageN = N, + 2 and N = N,.;» + 5 clusters at depends ork. Fork =5, ¢ = 0.979, SHARPE gives/(t) =

deployment time and each WSN fails when there are no mare®®*10'* and Py (t) = 5.0223 x 10_4756_57';3“074‘5. The
active clusters (i.e.N = Ny, = 0). The FT WSN contains reliability R, (t) = Py(t) + Pi(t) = e~ 51310 ¢ + 5.0223 x
sensor nodes with duplex sensors (Section 1I-B) and the NRU*te=513x10"t ‘and R,(t)|;=100 = e >13x10 "x100 4

WSN contains NFT non-duplex sensor nodes. We assume223x10~4x100xe~513x107*x100 — ( 9499940.04771 =

that both WSNs contain clusters with = %,,,;, + 5 where 0.99770.

kmin = 4 (Section IlI-C). The figure reveals that the FT WSN Similarly, we performed reliability calculations for an NF
improves the MTTF considerably over the NFT WSN for botand an FT WSN cluster and a complete WSN. Based on these
cases V = Nyin +2 and N = N,,,;,, +5). Fig. 7 also shows reliability calculations, Table | shows the reliability rf@an

that the MTTF for FT WSNs wher = 1 is always greater NFT WSN and an FT WSN evaluated @t 100 days when
than the MTTF for FT WSNs when # 1. We observe that N = N, +2 (Npen = 0) for clusters with nine sensor nodes
asp — 1, the MTTF for the FT WSN drops close to theon average (though similar calculations can be performed fo
NFT WSN, thus leading to an important observation that /SN clusters containing a different number of sensor nodes
build a more reliable FT WSN, it is crucial to have low failureon average). We observe similar trends as with sensor node
probability sensors. We observe that the MTTF for WSNs witteliability and WSN cluster reliability where reliabilityor

N = Nu.in + 5 is always greater than the MTTF for WSNsboth an NFT WSN and an FT WSN decrease® ascreases
with N = N,.;, + 2. This observation is intuitive becausq(i.e., reliability R,s, — 0 <= p — 1) because a WSN
WSNSs withN = N,,.;»+5 have more redundant WSN clustergontains clusters of sensor nodes and decreased individual



RELIABILITY FOR AN NFT WSNAND AN FT WSNWHEN

TABLE |

| p | NFT | FT (c#1) | FT (c=1) ]
0.05 0.99557 0.99883 0.99885
0.1 0.98261 0.99474 0.99534
0.2 0.93321 0.97583 0.98084
0.3 0.85557 0.93775 0.95482
0.4 0.75408 0.87466 0.91611
0.5 0.63536 0.78202 0.86218
0.6 0.51166 0.65121 0.78948
0.7 0.36303 0.49093 0.69527
0.8 0.20933 0.30328 0.55494
0.9 0.08807 0.11792 0.39647
0.99 | 4.054 x 103 | 4.952 x 103 0.08807

work. We plan to develop a WSN performability model
to capture both the performance and availability (and/or
reliability) simultaneously. We also plan to investigaf€ in
sensed data aggregation (fusion) in WSNs.
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