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Abstract—The retina manifests a vital role in tracing chronic
retinal disorders. It is located near the optic nerve that transforms
the captured light into neural signals. The most prominent
chronic eye diseases exhibit themselves in the retina. The analysis
of a retina for detecting disease symptoms is quite challenging.
Most of the prior methods developed using shallow and deep
learning algorithms primarily emphasized single feature extrac-
tion for disease diagnosis. The underlying article has designed an
ensemble network for extracting multiple retinal features using
a single comprehensive platform. It includes a set of models
that reflect feature-based needs to prevent intensity loss, micro-
vessels overlap, and data redundancy. The proposed method has
experimented with prominent benchmark datasets developed for
vessels tree, optic disc/cup, and arteries/veins extraction. It is also
compared with other methods and achieved promising results.
Our platform is helpful for physicians to trace the variations in
the retina of subjects facing chronic retinal disorders.

Index Terms—deep learning, e-health, image analysis, retinal
features, semantic segmentation.

I. INTRODUCTION

The advancement of AI algorithms has inspired researchers
and scientists to apply these techniques in medical diagnosis,
monitoring, and treatment. A diverse range of methods are
designed to target a set of medical challenges. The effort
is conducted to develop minimalistic solutions with reduced
computational complexities in medical image analysis. The
core emphasis is to localize the anatomical structures and cat-
egorize each pixel in a pre-defined set of classes, a critical step
towards the image-guided diagnosis. The publicly available
shared pool of resources, including datasets, algorithms, and
source code, has motivated and appreciated the deep learning
community to contribute in applied optics. It is found that
these techniques have provided a solid foundation in tracing
chronic ocular disorders such as diabetic retinopathy (DR),
hypertensive retinopathy (HR) and glaucoma [1]–[7].

These disorders can affect both central and peripheral vision
and are prominent in subjects with diabetes, hypertension, and
intraocular pressure. The DR creates a blockage in vessels
caused by an increased amount of blood glucose. It prevents
the smooth supply of oxygen and essential nutrients from
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nourishing the human retina. In HR, chronic hypertension
results in arterial and venous occlusion. The extended pressure
in arteries and veins ruptures the vessels and causes blood and
other fluids to enter the retina. The study conducted in [8]
showed that the subjects with retinopathy are potentially at a
high risk of vision loss, ischemic stroke, and heart failure.

The intraocular pressure in glaucoma, developed by aqueous
humor, results in optic nerve deterioration. It produces blind
spots in the visual field and gradually progresses into perma-
nent blindness. Detecting symptoms of these ocular disorders
at an early stage through retinal features variation is vital to
prevent vision loss. The initial step to analyze the root cause is
to precisely segment the retinal features. Common symptoms
reflected through retinal features include neovascularization,
microaneurysms, arterial and venous occlusion, optic nerve
damage, and change in the optic disc (OD) to optic cup
(OC) ratio. The underlying article has proposed an ensemble
network that can segment multiple features for detecting early
symptoms of retinal diseases. The main contribution of this
article includes the following:

1) A multi-feature extraction algorithm is proposed to trace
the symptoms of chronic retinal disorders.

2) The region of interest and feature to extract influence
the training mode and model selection.

3) The method produces a context-aware vessels tree, pre-
vents artery/vein overlapping, and eliminates redundant
pixels for effective optic disc/cup extraction.

4) The method is evaluated on benchmark datasets publicly
available with different focal points and dimensions.

II. RELATED WORK

Deep semantic segmentation has a vital role in medical
image analysis. It extracts the regions of interest required
for medical diagnosis. A core concept is to effectively label
every pixel to its corresponding class and elevate the system
precision. Among several architectural solutions proposed by
the AI community, the U-Net model [9] is the most prominent
technique applied for medical image analysis. It is capable
of operating with limited data samples. In [10], a method
to analyze non-trivial pathologies with an effective response
towards the central vessel reflex phenomenon is highlighted.
A deformable U-Net architecture [11] is developed to capture
the context knowledge by integrating low and high-end feature
maps. The authors of [12] have offered a deeper architectural
version to reduce the vanishing gradient problem with ade-
quate feature representations. The method applied the residual
and recurrent blocks along with the baseline model proposed
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Fig. 1. The context view of the proposed deep ensemble network. The figure depicts the extraction of multiple retinal features.

in [9]. A CU-Net model is designed in [13] to perform
medical image segmentation. In [14], a bi-directional attention
block adaptively learns the image features by capturing the
correlation between pixels.

A cascaded network [15] used both the local and global
context for producing feature maps. The LadderNet with
adjacent encoder-decoder path pairs is presented in [16]. The
authors of [17] have designed an IterNet, a modified U-Net
model with an iterative design pattern to semantically segment
medical records. In [18], the authors defined a UNet++ model.
It is a multi-depth U-Net architecture with a novel pruning
method for rapid inferencing. A hard attention network [19]
has dynamically distributed the regions to localize the vessels
independently using an attention mechanism. The context-
encoder network proposed in [20] is an effort to reduce the
spatial loss caused by max-pooling and stride operations. It
has applied residual multi-kernel pooling and dense atrous
convolutions. The residual U-Net was developed to see the
impact of skip-connections on deep network architectures. It
is an extension to a fully convolutional network with short
skip-connections and residual blocks [21]. In [22] the authors
applied a multi-scale network with a specialized feature extrac-
tor for data-driven DR analysis. The SDL for histogram-based
segmentation is used in [23].

In [24], a transfer learning approach for an optic disc/cup
segmentation is proposed. The method is operated with the
partial weights obtained by training an attention U-Net. These
weights are later adjusted with an unseen dataset for retinal
disease detection. A learning system for glaucoma detection

is proposed in [25]. Two distinct fuzzy models are defined
for optic cup and optic disc localization; the optic disc/cup
ratio is also measured to assess the glaucoma stage. [26]
defined a self-supervised pre-training technique for reducing
data scarcity and provided a multi-modal solution for medical
image analysis. In [27], a novel spatial attention module is
designed to perform an adaptive feature refinement process.
The technique developed in [28] emphasized a graphical
structure of vessels to build a strong tie between adjacent
pixels. The method transformed the neural graph model into
a unified network to exploit both local and global representa-
tions to improve segmentation accuracy. The model proposed
in [29] has used multi-scale input to achieve multi-sized
receptive fields with a U-shaped convolutional network and
multi-label function for Optic disc/cup segmentation. A dual-
residual stream-based semantic model is developed in [30] for
retinopathy diagnosis. It comprises internal and outer residual
skip-paths to assure feature re-use and produce direct spatial
edge information.

[31] has used image-level annotations to detect lesions for
screening diabetic retinopathy. A SeqNet model is developed
in [32] for vessels segmentation and classification into arteries
and veins. [33] has applied a three-stage model to separate
thick vessel from thin vessel. A method proposed in [34] has
developed a bi-modular clinical decision system for vessels
and optic nerve head analysis. The first module used a sup-
port vector machine with RBF kernel for A/V classification
and ratio calculation, whereas, the second module performed
analysis to detect the symptoms of papilledema. In [35], the



authors designed a method to find the impact of deep learning
in predicting hypertension, hyperglycemia, and dyslipidemia.
The article [36] analyzed graphs extracted from vascular tree
to classify in arteries and veins. The decision is made through
graph nodes and graph links. In [37], a pixel classification
with inter-subject normalization and intra-image regularization
is used for A/V classification. The discriminating properties
are captured using first and second-order texture features.
The authors in [38] developed the topological graph-theoretic
paradigm to distinguish arteries from veins. A multi-layered
architecture with a deep residual convolution network is de-
veloped to detect the condition of HR patients [39].

III. PROPOSED METHODOLOGY

A. Data Preprocessing

In our experiment, we performed a diverse range of image
preprocessing techniques. The images in each dataset are cap-
tured using specialized camera sensors with different angles,
dimensions, and lighting conditions. The data is standardized
for efficient training using series of steps. A green chan-
nel is extracted and converted in grayscale to manage the
contrast level, equalize the histogram frequency and reduce
noise amplification using a contrast-limited adaptive histogram
equalization technique. The data is further normalized, and
gamma values are corrected with power-law transformation.

B. Network Structure

The ensemble network shown in Fig. 1 contains three
distinct models to perform semantic segmentation. Each model
is designed to support the system efficacy by responding to an
issue a model experiences when dealing with diverse input
features without promoting additional computation complex-
ity. The model (m1) is an encoder-decoder structure with a
context restoration unit. It includes bi-directional convolutional
LSTM. The unit restores intensity values of degraded input
using context information. It enables the model to capture
long-range dependencies between pixels and triggers weight
sharing for each time-stamp. The model (m2) contains an
attention unit integrated with a U-shaped structure. It produces
attention-guided segmentation maps that keep track of micro-
vessels. The first part of a network extracts the vessels used
by the second part as an input map to emphasize more on
the local regions. In model (m3), a lightweight, minimalistic
segmentation model is designed. It has parameters approxi-
mately sixteen times less than conventional U-Net architecture.
The models essentially involves multiple convolutions and
deconvolutions with pooling, batch-normalization, and dropout
functions. It is vital to mention that the cost of each model is
measured with binary cross-entropy function. The parameters
are tuned with adam optimizer by dynamically adjusting the
learning rate between 10−2 and 10−8. A kernel of size k=3
is used to perform convolutions with the same padding. In
up-sampling, we used long skip-connections with identity
mappings to create the output as same as the input of the layer
and avoid the vanishing gradient problem. The hidden layers
are activated with the ReLU function; whereas, a sigmoid

activation function is used in the output layer of each employed
model. A leave-one-out and k-fold validation approach is
applied for datasets without any visible split. The instruction
set for complete training process is provided in Algorithm 1.

Algorithm 1 Multi-Feature Ensemble Network
Notation: color image (Irgb), channels (α, β, γ), green channel
(Ig), grayscale image (Ic), enhanced image (Ie), normalized
input (In), sub-sample (Is), preprocessed image (Ip), constant
(k), epoch (ε), null (ϕ), model (m), feature vector (~f ).

function Preprocess(M)
Γ(α, β, γ) ← Split Image(Irgb)
Ig ← Extract Channel(Γ(α, β, γ))
Ic ← Convert to Gray(Ig)
Ie ← Load CLAHE(Ic)
In ← Apply Normalization(Ie)

for (∀f in ~f) do
flag = 1
if (f == ϕ) then

flag = 0
break()

while (Irgb 6= ϕ) do
if (f == (VT ∨ A/V)) then

Ip ← Preprocess(Irgb)
Split Ip into mxn Is
Retain identical dimension for each Is
while ((Is =! 1) ∧ (count(Is) =! 2k)) do

pop()
if (Is in VT) then

m1 ← Invoke(m ⊕ CRU) . (VT extraction)
for (i = 0; i < ε; i++) do

m̂ ← train(m1)

else if (Is in A/V) then
m2 ← Invoke(m ⊕ AU) . (A/V extraction)
for (i = 0; i < ε; i++) do

m̂ ← train(m2)

else
break()

else if (f == (OC ∨ OD)) then
Crop Irgb around OD
Perform Irgb augmentation
Ip ← Preprocess(Irgb)
m3 ← Invoke(mm) . (OD/OC extraction)
for (i = 0; i < ε; i++) do

m̂ ← train(m3)

else
abort()

~f = m̂.predict(Xtest)

IV. EXPERIMENTATION

A. System Configuration

The deep architecture with few hidden layers even requires
extensive storage and multicore graphical processing units.



TABLE I
FUNDUS IMAGE DATASETS USED IN OUR APPROACH.

Feature Dataset Images Dimension FOV Format

Vessels-Tree
DRIVE [40]
STARE [41]
CHASE-DB1 [42]

40
20
28

565×584
700×605
999×960

45◦

35◦

30◦

TIF
PPM
JPG

OD/OC
DRISHTI-GS [43]
RIM-ONE [44]
DRION-DB [45]

101
159
110

2896×1944
2144×1424
600×400

30◦

34◦

45◦

PNG
JPG
JPG

Artery/Vein
HRF [46]
LES-AV [47]
RITE [48]

45
22
40

3504×2336
1620×1444
565×584

45◦

30◦

45◦

JPG
PNG
TIF
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Fig. 2. Extraction of OD/OC and vessels tree with the proposed approach.
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Fig. 3. A/V Extraction, here (a) LES-AV, (b) HRF, (c) RITE

Deploying required resources on-premises makes the training
and inference extremely expensive. In this experiment, we
have subscribed google colab pro version, a cloud platform
designed for AI researchers to make efficient use of high-end
resources off-premises for model deployment [49]. Our model
is trained with priority-based T4 and P100 GPUs using 25GB
RAM. Additional 100GB memory is procured from google
cloud storage to meet the secondary memory requirement.

B. Data Collection

The data is acquired from multiple fundus image re-
sources. Each dataset is publicly available for encouraging
AI researchers and other scientists to evaluate segmentation
techniques designed for glaucoma, diabetic and hypertensive
retinopathy detection. In our experiment, we have used three
datasets to target each category of a vessel, optic disc/cup, and
arteries/veins extraction given in Table I. The data selected is
diverse in nature with different dimensions, image quality, fo-
cal point, field of view (FOV), format and taken under uneven
lighting conditions to mimic the real simulation environment.

TABLE II
EVALUATION OF A PROPOSED METHOD ON BENCHMARK DATASETS.

Feature Dataset DICE IOU AUC

Vessels-Tree
DRIVE
STARE
CHASE-DB1

0.8298
0.8515
0.8203

−
−
−

0.9887
0.9925
0.9890

OD/OC
DRISHTI-GS
RIM-ONE
DRION-DB

0.8940
0.9567
0.9729

0.8522
0.9227
0.9304

−
−
−

Artery/Vein
HRF
LES-AV
RITE

0.9693
0.8258
0.9687

−
−
−

0.9780
0.9496
0.9868

TABLE III
COMPARISON OF THE PROPOSED METHOD WITH OTHER TECHNIQUES

DESIGNED FOR VESSELS TREE EXTRACTION.

Dataset DRIVE STARE CHASE-DB1

Method/Metrics ACC AUC ACC AUC ACC AUC
Ronneberger [9] 0.9531 0.9755 0.9690 0.9898 0.9578 0.9772
Yan [50] 0.9542 0.9752 0.9612 0.9901 0.9610 0.9781
Orlando [51] − 0.9507 − − − 0.9524
Azzopardi [52] 0.9442 0.9614 0.9497 0.9563 0.9387 0.9487
Zhuo [53] − 0.9754 − − − −
Zhuang [16] 0.9561 0.9793 − − 0.9656 0.9839
Jin [11] 0.9697 0.9856 0.9729 0.9868 0.9724 0.9863
Liu [54] − 0.9798 − − − −
Liangzhi [17] 0.9573 0.9816 0.9655 0.9851 0.9701 0.9881
Alom [12] − 0.9784 − 0.9815 − −
Shin [28] − 0.9801 − − − 0.9830
Alom [12] 0.9556 0.9784 0.9712 0.9914 0.9634 0.9815
Laibacher [55] − 0.9714 − − − 0.9703
Mou [56] − 0.9796 − − − 0.9812
Zhang [57] 0.9476 0.9636 0.9554 0.9748 0.9452 0.9606
Wang [19] 0.9581 0.9823 0.9673 0.9881 0.9670 0.9871

Proposed Method 0.9701 0.9887 0.9757 0.9925 0.9738 0.9890



C. Implementation Results and Comparison

The quantitative analysis of our method is performed using
various evaluation metrics, including accuracy, dice-score, an
area under the ROC curve (AUC), and intersection over union
(IOU). The proposed approach has applied both patch-based
and end-to-end image-based training. The precise extraction
of features requires adequate preprocessing to fix uneven
intensity distribution and noise. The channel with the high-
est candela/(meter)2 value is extracted and transformed into
grayscale. The pixel imbalance and noise amplification are
reduced by splitting an image into 8×8 tiles and equalizing
the histogram to keep intensities uniform across all the bins.
The data is normalized for bringing all the intensity values
within 0, 1. A lookup chart is created for mapping intensities to
their corresponding gamma-corrected values. Our experiment
has applied the 80:20 rule on the training data, where 80% of
data is kept for training, and 20% is reserved for validation.
The number of input samples are different in each dataset
highlighted in Table I. Some of the datasets even contain no
standard train/test partitioning. The split ratio for unordered
data distributions is decided from previous literature.

The choice of training mode and selection of a model
depends on the feature to extract. The vascular tree structure
and the arteries/veins cover a major portion of an image. The
extraction of these features demands a larger area to segment
without missing any essential vessel. In optic disc/cup extrac-
tion, the ROI is limited to an area around the optic nerve head
and the boundary is comparatively well defined; hence, we can
easily crop an image to reduce its dimension and restrain our
focus to the target region. The proposed method have applied
a patch-based approach for vessels and sub-vessels (A/V)
extraction. Input samples and groundtruths are divided into
48×48 sub-samples. It has randomly selected 1000 patches
from each image with foreground intensities. The network
uses these patches to produce segmentation maps equal in
dimension to the given input. In optic disc/cup extraction,
the area around the optic nerve fiber is cropped for reducing
input dimension to boost computational efficiency and used an
end-to-end image training approach. The method has applied
image augmentation technique before feeding the input to the
network with vertical and horizontal flip, rotation at an angle
30◦, altering the zoom range by changing coordinate values,
and scale shift of 0.1 to the cropped input. After essential
preprocessing, the input is provided to the block of training
determined by the feature of interest. The evaluation of each
extracted feature is given in Table II.

In vessels tree extraction, we can observe that the proposed
method for model (m1) has shown better results than all the
related work experimented on DRIVE, STARE, and CHASE-
DB1 provided in Table III. The accuracy (ACC) and AUC
are used to evaluate and compare our results. It is significant
to indicate that using bi-directional convolutional LSTM for
intensity restoration helps visualize vessels with enhanced
quality and secure context with calculated precision using
long-range connections of neighboring pixels. Similarly, model

(m2) extracts arteries and veins by passing through successive
steps of training. The output map of a previous step serves
as an input attention map for the next to focus more on
local regions and prevent A/V overlapping. Also, it helps in
precisely differentiating arteries from veins in a 2D environ-
ment. The performance is evaluated with accuracy, AUC, and
DICE metrics. Our method has shown a better response on
RITE and HRF datasets than recently published work catering
to a similar problem, given in Table IV. The extraction of
optic disc and cup is performed using DRISHTI-GS, RIM-
ONE, and DRION-DB datasets. In Table V, we can see that
our method has surpassed by a decent margin to previously
conducted work. It has achieved the highest Dice and IOU
for the datasets mentioned above. It is important to highlight
that model (m3) has better response for both OD and OC
extraction by using least number of parameters (16 times<U-
Net architecture). The extraction of multiple features using the
proposed ensemble network is depicted in Fig. 2 and Fig. 3.
It shows the image, ground truth, and predicted feature map.

TABLE IV
COMPARISON OF THE PROPOSED METHOD WITH OTHER TECHNIQUES FOR

ARTERY/VEIN EXTRACTION USING RITE AND HRF DATASETS.

Dataset RITE HRF

Method/Metrics ACC AUC DICE ACC AUC DICE
Maninis [58] 0.9305 0.9829 − − − −
Orlando [51] 0.9508 0.9556 − 0.9464 0.9442 −
Yan [59] 0.9582 0.9826 − 0.9449 − −
Galdran [60] 0.9322 0.9847 0.9631 0.9155 0.9424 0.9582
Hemelings [61] 0.9479 − 0.9671 0.9681 − 0.9688

Proposed Method 0.9617 0.9868 0.9687 0.9698 0.9780 0.9693

TABLE V
COMPARISON OF THE PROPOSED METHOD WITH OTHER METHODS

DEVELOPED FOR OPTIC DISC/CUP SEGMENTATION.

Dataset DRISHTI-GS RIM-ONE DRION-DB

Method/Metrics DICE IOU DICE IOU DICE IOU
Ronneberger [9] 0.8806 0.8487 0.9531 0.8914 0.9688 0.8802
Zhou [62] 0.8470 − 0.8530 − − −
Son [63] 0.8643 0.7748 0.9532 0.9122 0.9685 −
Zahoor [64] − − − − − 0.8860
Fu [65] 0.8618 0.7730 0.9526 0.9114 − −
Wang [66] 0.8580 − 0.8650 − − −
Gu [20] 0.8818 0.8006 0.9527 0.9115 − −
DRIU [58] − − − − 0.9725 0.8805
Xu [67] 0.8920 0.8230 0.9561 0.9172 − −
Zilly [68] 0.8710 0.8507 0.9413 0.8909 − −
Sevastopolsky [69] 0.8521 0.7515 0.9516 0.8921 0.9426 0.8928
Abdullah [70] − − − − 0.9102 0.8512
Al-Bander [71] 0.8282 0.7113 0.9036 0.8289 0.9415 0.8912
Shuang [72] 0.8739 0.7808 0.9491 0.9065 − −
Proposed Method 0.8940 0.8522 0.9567 0.9227 0.9729 0.9304

V. CONCLUSION AND FUTURE WORKS

In conclusion, we have designed a platform to advance
a vision-critical system for tracing chronic eye disorders by
extracting retinal features. Each feature is segmented with
a specialized semantic network influenced by the region of



interest. The platform used both patch-based and end-to-end
image-based training methods applied on benchmark fundus
data. The experiment shows that our method has a promising
impact in dealing with missing vessels, vessels overlapping,
and data redundancy. The concept can be deployed as a
unified diagnostic system to early detect the symptoms of
glaucoma, diabetic and hypertensive retinopathy. In the future,
the proposed platform would be extended for finding the
correlation between retinal disorders and systemic diseases
like cardiac arrest and alzheimer’s disease. Additionally, at
an architectural level, we would use the pre-trained models to
analyze the platform response for unseen data distributions.
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