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Abstract— Deep neural network (DNN) training is 

generally performed by cloud computing platforms. However, 

cloud-based training has several problems such as network 

bottleneck, server management cost, and privacy. To overcome 

these problems, one of the most promising solutions is 

distributed DNN model training which trains the model with 

not only high-performance servers but also low-end power-

efficient mobile edge or user devices. However, due to the lack 

of a framework which can provide an optimal cluster 

configuration (i.e., determining which computing devices 

participate in DNN training tasks), it is difficult to perform 

efficient DNN model training considering DNN service 

providers’ preferences such as training time or energy 

efficiency. In this paper, we introduce a novel framework for 

distributed DNN training that determines the best training 

cluster configuration with available heterogeneous computing 

resources. Our proposed framework utilizes pre-training with 

a small number of training steps and estimates training time, 

power, energy, and energy-delay product (EDP) for each 

possible training cluster configuration. Based on the estimated 

metrics, our framework performs DNN training for the 

remaining steps with the chosen best cluster configurations 

depending on DNN service providers’ preferences. Our 

framework is implemented in TensorFlow and evaluated with 

three heterogeneous computing platforms and five widely used 

DNN models. According to our experimental results, in 76.67% 

of the cases, our framework chooses the best cluster 

configuration depending on DNN service providers’ 

preferences with only a small training time overhead. 

Keywords— Distributed processing; Deep neural network; 

Training time; Energy efficiency; Edge Computing 

I. INTRODUCTION 

Deep neural networks (DNNs) are being adopted in an 

increasing number of application domains including speech 

recognition, machine translation, medical image analysis, 

autonomous driving, and games. As DNNs permeate the 

mobile application market, it is imperative to develop 

efficient DNN frameworks for both training and inference. 

Particularly, since battery-powered mobile devices typically 

have tight energy and power budgets, appropriate 

management of power and energy consumption when 

training or inferencing the DNNs is crucial.  

    While DNN inference tasks are often executed in 

mobile edge or end-user devices, the most widely used 

method for DNN training is cloud-based processing that 

offloads the DNN training tasks to powerful cloud 

computing devices or platforms. However, training DNN 

models on cloud for an increasing number of mobile and 

Internet of things (IoT) devices would not only result in 

excessive data communication burden to the network and 

data processing load for the cloud platforms but would also 

incur a huge cost for the DNN service provider. The 

problems arising due to training DNN models on cloud can 

be summarized as follows. First, there could be serious 

network bottleneck and data processing burden in cloud as a 

huge amount of the data must be uploaded to the cloud 

servers. This network bottleneck may also result in large 

latency in DNN training. Second, the cloud-only DNN 

training may incur an excessive cost as total cost of 

ownership (TCO) for maintaining a cloud-based server 

system is huge. Instead of deploying one’s own customized 

cloud, one may choose cloud computing services such as 

Amazon EC2 [2]; however, the cost of using commercial 

cloud computing platforms is not trivial. Third, the use of 

commercial cloud can create privacy issues as user/training 

data, which may contain sensitive information (e.g., medical 

images), needs to be sent to the cloud servers.  Fourth and 

finally, to support on-device incremental learning [30], it is 

crucial to have DNN training capability in edge nodes or 

devices.  

To overcome the above mentioned limitations in cloud-

based DNN training, many studies related to edge- or user-

side device processing have been carried out [12][21][25][31] 

as the computing capability of those devices is increasing. 

The core enablers for the edge or user-side device processing 

technology are high-performance application processors or 

system-on-chips which are generally outfitted with artificial-

intelligence (AI) processing units or powerful graphics 

processing units (GPUs).  These edge/user devices can help 

cloud servers by enabling distributed DNN training 

[10][18][29][32], which performs the training with both high-

performance servers and edge/user-side devices.  

Recent studies on distributed DNN training mainly focus 

on reducing network communication latency overheads in 

multi-GPU or multi-processor systems that leads to 

performance improvement. Even though performance 

improvement is still crucial for efficient distributed DNN 

training, it is also very important to consider costs (e.g., TCO) 

and energy consumption of the overall distributed cluster 

systems [13][28]. As several different design metrics exist in 

configuring the distributed DNN training cluster, there could 

be different preferences depending on the DNN server 

maintainers or service providers. Hence, it is imperative to 

consider those preferences together when performing 

distributed DNN training. 

In this paper, we propose a novel framework for distributed 

DNN training with heterogeneous computing platforms. The 

proposed framework takes into account the characteristics of 

heterogeneous computing platforms/devices. For example, 

heterogeneous platforms typically have different CPUs (e.g., 

high performance server CPUs or low-power embedded 

CPUs), GPUs, memory capacity, storage capacity, etc., which 

manifest different performance and energy efficiency when 



running DNN training. With our proposed framework, DNN 

service providers choose one among four metrics (training 

time, power, energy consumption, and energy-delay product). 

Our framework then composes a training cluster that is 

estimated (by our framework) as the best training cluster for 

the chosen metric. The proposed framework is evaluated for 

five prominent DNN models such as AlexNet [20], CIFAR10 

(model provided by TensorFlow1, not a dataset), Network in 

Network (NiN) [24], ResNet [14], and SqueezeNet [17] with 

a mix of high-/mid-/low-end devices for distributed 

processing.  

We summarize our contributions as follows: 

 We propose a novel DNN training framework that 

comprehensively considers the characteristics of the 

heterogeneous devices, communication overheads, 

available network bandwidths, and DNN service 

providers’ preferences. 

 We propose an analytical model for training time 

estimation in the distributed processing environment 

with heterogeneous devices and a regression-based 

power model for accurate power estimation for DNN 

training. 

 We implement our proposed framework based on 

TensorFlow which is one of the most widely used 

DNN frameworks.  

 We show that the proposed framework selects the 

best configurations in 76.67% of the total feasible 

device cluster configurations, which means our 

framework leads to better distributed DNN training 

considering DNN service providers’ preference. 

 The training cluster chosen by our proposed 

framework actually results in reduced training time, 

power, energy, and EDP by 45.5%, 4.5%, 31.6%, 

and 27.6%, respectively, compared to the second-

best cluster configurations, on average. 

The rest of the paper is organized as follows. Section II 

discusses recent related work. Section III explains our 

proposed framework in detail. Section IV demonstrates our 

experimental results and lastly, Section V concludes this 

paper. 

II. RELATED WORK 

A. Mobile Device-Based DNN Processing 

For efficient DNN training and inference, many studies 

regarding the mobile device-based processing have been 

carried out. Guo [12] evaluated and compared performance of 

user device-based and cloud-based inference. According to 

their analysis, cloud-based inference shows reasonable 

response time and energy consumption, whereas user device-

based inference is feasible in a certain scenario because of the 

computing capability constraints in mobile devices. In [21], 

for mobile sensor-based inference, Lane et al. demonstrated a 

low-power inference engine prototype in a mobile device by 

using CPU and DSP. When applying deep neural networks to 

                                                           
1 Available at: 

https://www.tensorflow.org/tutorials/images/deep_cnn#cifar-10_model 

In this paper, we call this DNN model as ‘CIFAR10’ as they call it as 

‘CIFAR10’ model in the above URL. Please also note that ‘CIFAR10’ in 

this paper does not indicate a dataset [4]. 

a various artificial intelligence applications, their proposed 

framework shows a feasibility of running inference tasks in 

mobile domains under the resource constraints and a 

robustness in inference tasks. Deepmon framework [16] 

appropriately modifies DNN models for continuous image or 

vision data processing while extracting the video frame 

characteristics to reduce the amount of the data required for 

DNN processing. The studies or proposals introduced above 

demonstrate a feasibility or solution for mobile device-based 

inferences. Compared to these works, our work mainly 

focuses on the distributed DNN training tasks considering the 

heterogeneity of the diverse computing devices or platforms 

from high-performance devices to low-end mobile user or 

edge devices. 

B. Task Offloading for Distributed DNN Processing 

Task offloading can be a good alternative for efficient DNN 

processing that leads to fast response time and low energy 

consumption. DeepX [22] divides a DNN model to unit-

blocks and assigns them to heterogeneous processors in a 

local device (e.g., CPUs, GPUs, DSPs, etc.) considering the 

resource usages while performing model reduction when 

there is a resource constraint. Xu et al. [33] proposed a 

technique to reduce a DNN model for mobile inference tasks 

and assigns tasks to mobile and wearable devices considering 

the user preference and resource status in the devices. These 

works [22][33] focus on efficient DNN inference in mobile 

devices while our work focuses on the efficient DNN training 

with heterogeneous devices. Deep3 [27] proposes a unified 

framework for DNN training and inference with 

heterogeneous devices. Deep3 framework aims to determine 

the best neural network size by considering hardware resource 

constraints of computing platforms. In addition, it includes a 

new DNN graph traversal method that efficiently exploits 

parallelisms at various levels (e.g., hardware, neural networks, 

etc.). However, their work [27] did not consider network 

communication overheads while our framework considers 

impacts of the available network bandwidth on distributed 

DNN training.  

C. Communication-Aware Distributed DNN Processing 

Since communication overhead is a huge factor in distributed 

DNN training performance and energy efficiency, many 

studies which consider communication overheads in 

distributed DNN processing have also been performed. 

Keuper et al. [18] analyzed the impact of communication 

overheads, parallelism in matrix computations, and data 

distributions in distributed DNNs by using data-parallelized 

stochastic gradient descent (SGD). According to their analysis, 

scaling more than 16 nodes in distributed DNN processing is 

not efficient due to the communication overheads (i.e., 

communication-bound due to a large number of nodes). 

Sergeev and Del Balso [29] demonstrated that communication 

overheads in distributed DNN training are a huge factor for 

DNN training performance. They showed that the effective 

hardware utilization is only around 50% when training 

Inception V3 and ResNet-101 models with 128 Nvidia Pascal 

GPUs due to the communication overheads. They also 

proposed Horovod which applies Baidu’s ring-allreduce 

algorithm [3] to improve inter-GPU communication 



performance. Compared to [29], our work assumes that we 

use heterogeneous devices whose performance and available 

resources are diverse (from low-end to high-end devices). It 

means our framework can be more broadly applied to real-

world systems where many types of the heterogeneous 

devices can exist in the cluster. Hsieh et al. [15] demonstrated 

that the geological location of the computing server devices 

significantly affects distributed DNN training performance. 

For example, if a distributed DNN training task requires to 

communicate between Singapore and Sao Paolo through 

WAN, performance is worsened by 13.7X~26.8X. Thus, they 

proposed to reduce communication between the devices by 

updating the data only when they have sufficiently 

meaningful training results (i.e., more than a certain threshold) 

from the local devices. Similarly, Wang et al. [32] proposed a 

control algorithm for the best trade-off between the local 

update and global parameter aggregation while reducing an 

adverse impact on the convergence rate of DNNs. Their 

proposed algorithm tries to reduce communication overheads 

arisen from the synchronization of the parameters which 

hardly affect the convergence rate of the DNNs. However, 

their algorithm does not consider available network 

bandwidth which significantly affects distributed DNN 

training performance and energy-efficiency.  

III. OUR PROPOSED FRAMEWORK 

In this section, we introduce our proposed deep neural 

network (DNN) training framework with heterogeneous 

computing platforms or devices. Our framework considers 

available device resource, communication overhead, network 

bandwidth, and DNN service provider’s preference to derive 

the best distributed DNN training cluster configurations with 

a given set of available computing devices. For criteria of 

DNN service providers’ preferences, we consider training 

time, power, energy, and energy-delay product (EDP).  

Fig. 1 depicts our baseline distributed DNN training 

architecture with data parallelism, asynchronous update, and 

star topology (parameter server architecture [23] is one of the 

representative realizations of the star topology). In each 

device, the entire DNN model is loaded while the datasets for 

DNN model training in each device are different. Each device 

asynchronously sends and updates the training outputs to the 

parameter server in order to maintain the up-to-date global 

model state.  

A. Key Challenges to be Addressed in Distributed DNN 

Training with Heterogeneous Devices 

1) Parameter communication overhead and limited 

network bandwidth 

In the case of distributed DNN training, communication 

overhead (latency and power) hugely affects training time and 

energy efficiency of the DNN training cluster. In [15], [18], 

and [29], they already observed that the network status and 

communication overhead are key factors for distributed DNN 

training performance and energy efficiency. Since DNN has 

many different network architectures such as convolutional 

neural network (CNN), recurrent neural network (RNN), and 

generative adversarial network (GAN), etc., the available 

DNN models have diverse sizes (e.g., layers, number of 

parameters, etc.). Depending on these characteristics of the 

DNN models, communication intensity between the nodes 

also varies. According to our evaluation and analysis on 

distributed DNN training with heterogeneous devices, as we 

have smaller DNN models, parameter communication 

overhead more hugely affects training time and energy 

efficiency of the DNN training. The reason is that the portion 

of the parameter communication latency among the entire 

execution time will be larger than that of the computation 

latency. In addition, if we configure the distributed DNN 

training cluster with high-performance devices, the parameter 

communication overhead will also hugely affect performance 

and energy efficiency during the DNN training because 

relative data communication latency and energy will also be 

 

Fig. 1. A conceptual block diagram of data parallelism with asynchronous 
update. 

 

(a) Execution time per step (y-axis: log2 scale) 

 

(b) Power consumption 

Fig. 2. Training time and power impacts due to network bandwidth 

normalized to the case of 1Gbps network bandwidth. In the case of 

AlexNet, JTX1 cannot participate in the training due to hardware limitation 

of the JTX1. 
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larger. On the other hand, if we compose a distributed DNN 

training cluster with a mix of high-end and low-end 

computing devices, the main performance bottleneck would 

be not low performance of the low-end computing devices but 

decreased throughput of high-end devices due to the 

parameter communication overhead particularly when 

training a large DNN model. Consequently, we should 

carefully consider the communication overheads attributed to 

the parameter communication, limited network bandwidth, 

computing capability of the devices, and DNN model size, 

which in turn affect training time, power, energy, and EDP of 

the distributed DNN training cluster.  

    Along with the parameter communication overhead, 

limited network bandwidths in the cluster are also a key 

challenge. Fig. 2 depicts our preliminary evaluation results 

that show the training time per step and power consumption 

when varying the network bandwidth (1Gbps, 100Mbps, and 

10Mbps) with heterogeneous computing devices. We perform 

the experiments with the Desktop PC as a parameter server 

and Nvidia Jetson TX1 (JTX1) or Jetson TX2 (JTX2) as a 

worker (please refer to Section IV-A for more detailed 

hardware specifications and our experimental setup). As the 

network bandwidth decreases, the time per step significantly 

increases. Compared to the case of the 1Gbps bandwidth, 

when using JTX2 as a worker, time per step increases by ~4 

times and >32 times in the cases of the 100Mbps and 10Mbps 

network bandwidths, respectively. Power consumption tends 

to be reduced when the network bandwidth decreases. This is 

mainly because the idle time increases in the computing 

devices due to higher waiting delay in the nodes (i.e., waiting 

for data from other nodes). In the case of the energy 

consumption, due to the increased time per step, energy 

consumption will significantly increase despite of reduced 

power consumption. As demonstrated in Fig. 2, if the 

available network bandwidths are not carefully considered, 

training time and energy efficiency of DNN training would 

also be seriously hurt. 

2) Power and energy constraints 

Though improving DNN training performance is a key issue 

for deploying DNN in many real-world applications, reducing 

TCO is also one of the important challenges in the datacenters 

or large-scale server systems. To overcome this problem, 

some of the training tasks can be taken over from the cloud 

servers to the mid-end or low-end computing devices such as 

mobile end-user (i.e., local) or edge devices [26] as the 

computing capability of the local or edge devices increases. 

However, mobile edge or local computing devices generally 

have a limited power and energy budget. Thus, improving 

power and energy efficiency is also a very important 

challenge in distributed DNN training not only for high-

performance server devices but also for mid-/low-end (mobile) 

edge or end-user devices.   

    Previous works for power and energy management in 

distributed DNNs aim to: 1) remove or reduce redundant 

operations by modifying the DNN training algorithms [9], 

and 2) distribute subtasks to mobile devices and cloud servers 

by dividing the DNN model by layers [11] in order to manage 

battery power in mobile devices and computational loads in 

cloud servers. As those works already demonstrated, we need 

a holistic framework for distributed DNN training which 

takes into account power and energy efficiency as well as 

training time. 

B.  Framework Overview 

Considering DNN service providers’ preference, we propose 

a distributed DNN framework that takes into consideration 

different characteristics of heterogeneous computing devices. 

Our framework comprehensively considers the two key 

challenges in distributed DNN training: communication 

overhead and power/energy constraints. Fig. 3 depicts an 

overview of our proposed framework. Our framework has six 

steps for distributed DNN training. Each step works as 

follows: 

①. Before the actual DNN training, in order to find the 

best distributed DNN training cluster configuration 

(i.e., which devices should participate in or not), 

our framework orders a DNN pre-training in each 

device for a small number of the steps. 

②. Each device measures available network bandwidth 

to consider communication overheads and executes 

DNN training for a small number of the steps. In 

this phase, each device measures average training 

time per step and estimates power consumption by 

 

 

 

 

 

 

 

 
 
Fig. 3. Overview of the proposed DNN training framework. In this example, Device 1 is excluded from the cluster as our framework decides that participating 
Device 1 in the cluster is not efficient for meeting the DNN service providers’ preferences.   
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using the power estimation model (for more details, 

see Section III-C2).  

③. With the measured training time per step and 

estimated power in ②, our framework reflects 

communication overhead (i.e., parameter 

communication and network bandwidth) in order to 

precisely estimate distributed DNN training time 

and power consumption under a certain cluster 

configuration (for more details, see Equation (2) 

and (3) in Section III-D).  

④. With the results from ② and ③, by using our 

training cluster model (see Section III-D), our 

framework estimates training time, power, energy, 

and EDP for each cluster configuration candidate. 

⑤. Depending on DNN service providers’ preference2 

(i.e., in terms of training time, power, energy, or 

EDP), our framework chooses the best cluster 

configuration and orders the DNN training to the 

selected devices. 

⑥. The selected devices start the DNN training for the 

remaining training steps. When performing 

distributed training with multiple heterogeneous 

devices, the remaining steps are dynamically 

distributed in runtime (i.e., upon finishing a certain 

training step, the next remaining step is 

immediately assigned to the available devices). 

In the following subsections, we explain pre-training and 

training cluster model in more details. 

C. Pre-Training 

1) Training time per step measurements 

In stochastic gradient descent (SGD) methods, which are 

generally used for DNN training, throughput (i.e., amount of 

computation) typically tends to be steadily maintained across 

training steps because computation in each step is iteratively 

performed with sub-datasets. Consequently, by only sampling 

a small number of training steps, one can easily and 

accurately estimate the entire training time and power 

consumption. In the pre-training phase of our framework, 

DNN training is performed in each device for 100 steps. 

Upon finishing the pre-training, our framework collects the 

training time results from each device and calculates training 

time per step (denoted as Ti where i corresponds to a certain 

device) for each device.  

    On the other hand, picking up the sample of 100 steps 

immediately after starting the DNN model training may lead 

to inaccurate training time estimation. According to our 

empirical results, Ti severely fluctuates before finishing 

around 300th step while it is almost stable for the rest of the 

training steps (i.e., after around 300th step). The main reason 

for this phenomenon would be due to warming up of the 

hardware and software in the early-steps of the DNN training. 

Thus, we measure Ti with the 100 steps after 300th step (i.e., 

the results from 301~400th training step). Please note that we 

run pre-training in each device for 100 steps (301~400th step). 

                                                           
2 In this paper, our proposed framework can only select one metric 

among four. However, we could also give weights to multiple metrics (e.g., 

30% for training time and 70% for energy) to select the best configuration 

though it is out-of-the-scope of this paper. We leave it as our future work. 

Though we could reduce the training time overhead by 

running the different training steps in each device, supporting 

the training of different steps for each device is out of scope 

of this paper. Along with the Ti, we also measure model build 

time (denoted as TB
i
 where i corresponds to a certain device) 

in each device as a large DNN model generally requires a 

huge model build time before starting the execution of 

training steps. 

    Our training time estimation model shows only small 

error rates: 0.98%, 3.34%, 16.01%, 1.13%, and 3.88% for 

AlexNet, CIFAR10, NiN, ResNet, and SqueezeNet, 

respectively. In the case of NiN, a training time estimation 

error seems to be a little higher than the other models. This is 

because it takes longer time to enter a stabilized phase than 

the other models. In this case, we may be able to perform pre-

training later than 400th step. However, late pre-training also 

incurs training time and energy overhead because we should 

use all available devices for training time estimation until 

finishing the pre-training. Considering the trade-off between 

the training time estimation accuracy and pre-training 

overheads, we decided to use 301~400th training steps for 

training time estimation. Even with the training time 

estimation error in NiN model, it is still tolerable for selecting 

the best cluster configuration (see our experimental results).  

2) Power estimation model 

To accurately estimate power consumption in each device, we 

propose a linear regression-based power estimation model 

similar to [19]. In this model, various performance counters 

and device-specific parameters are collected during 

401~500th training step. The following equation is used for 

the linear regression:  

Pi = y+x1× Fcpu+x2× Fgpu+x3× Femc+x4× Fcp+ 

x5× Ucpu+x6× Ugpu+x7× Ucp+x8× Umem+            (1) 

x9× Mgpu+x10× Mswap+x11× Ccp  

 

For accurate power estimation, 11 performance counter 

values are collected from each device while x1~x11 and y 

values are determined through a linear regression method 

with the actual power measurement results, which can be 

done in offline. Please note that F, U, M, and C mean the 

clock frequency, utilization rate, memory usage and the 

number of active cores, respectively. The subscripts in 

Equation (1) also corresponds to the hardware components 

in devices (emc: external memory controller, cp: co-

processor, swap: swap memory). The estimated power 

consumption for each device will be used to calculate 

energy and EDP with estimated training time.  

    Our power estimation model accurately estimates 

power consumption of different computing devices. For 

Desktop PC, JTX1, and JTX2, average estimation errors are 

2.2%, 1.73%, and 1.17%, respectively, when running DNN 

training with TensorFlow and MNIST dataset.  

D. Training Cluster Model 

After the pre-training, our framework obtains the Ti, TB
i, and 

Pi, which correspond to average training time per step for 

device i, model build time for device i, and estimated 

average power consumption for device i, respectively. By 

aggregating the estimated results, our framework estimates 



the total training time (TT
j), total power (PT

j), total energy 

(ET
j), and total EDP (EDPT

j) in a certain cluster 

configuration j.   

    To integrate communication overheads into our model, 

we derive TC
i (average training time per step of device i 

including communication overheads) and PC
i (average 

power of device i including communication overheads) from 

Ti and Pi, respectively, by using the following Equations.  

                                     𝑇   𝑖
𝐶 = 𝑇𝑖 × 𝛼  𝑖

𝑇 × 𝛽  𝑖,𝑘
𝑇

                  (2) 

   𝑃   𝑖
𝐶 = 𝑃𝑖 × 𝛼  𝑖

𝑃 × 𝛽  𝑖,𝑘
𝑃

                 (3) 

αT
i , βT

i, k, αP
i, and βP

i, k values are adjusting factors to reflect 

the impacts of parameter communication overheads and 

network bandwidths. αT
i (αP

i) means a weight value for 

training time (power) to reflect impacts of parameter 

communication on device i. βT
i, k (βP

i, k) means a weight 

value for training time (power) to reflect impacts of network 

bandwidth on device i under network bandwidth k. Please 

note that αT
i, βT

i, k, αP
i, and βP

i, k can be empirically 

determined through multiple measurements with varying the 

network bandwidths and thoroughly calibrated. We could 

develop the systematic method instead of relying on 

empirical measurements to determine these values though 

we also leave it as our future work. 

Assuming that we have N available computing devices 

in a certain device cluster configuration, we can derive the 

total estimated training time for a certain cluster 

configuration by using the following Equation: 

 𝑆 = ∑
𝑇   𝑗

𝑇  − 𝑇    𝑖
𝐵

𝑇    𝑖
𝐶  (𝑖 = 1 … 𝑁)         (4) 

where TT
j and S means the total estimated training time for a 

certain cluster configuration j and the number of the training 

steps, respectively. In this work, we use 100,000 for S value. 

For power, energy, and EDP, we can obtain each result 

by using Equations (5), (6), and (7), respectively. 

 𝑃   𝑗
𝑇 = ∑ 𝑃   𝑖

𝐶  (𝑖 = 1 … 𝑁)          (5) 

    𝐸  𝑗
𝑇 =  𝑃  𝑗

𝑇  ×  𝑇  𝑗
𝑇               (6) 

                                          𝐸𝐷𝑃  𝑗
𝑇 = 𝑇  𝑗

𝑇  ×  𝐸  𝑗
𝑇                            (7) 

For all possible cluster configurations, TT
j, PT

j, ET
j, and 

EDPT
j are calculated. After that, our framework sorts the 

possible cluster configurations according to DNN service 

providers’ preference. Finally, our framework picks the best 

(estimated by our model) cluster configuration and actually 

performs DNN model training for the remaining steps with 

the selected device cluster configuration. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

1) Deep learning framework 

For our experiments, we use GPU-mode TensorFlow [5] 

which is one of the most widely used distributed deep 

learning frameworks. For large-scale distributed training, 

our TensorFlow adopts parameter-server architecture [23]. 

For parameter server selection from multiple devices, we 

select the CPU of the device which shows the highest 

throughput (i.e., performance) among the available 

computing devices in a certain cluster configuration. GPUs 

in each device run as workers. In the case of single-device 

cluster, device GPU works as both the parameter server and 

worker.  

TensorFlow provides two different methods to 

implement data parallelism: In-Graph Replication and 

Between-Graph Replication. In the case of In-Graph 

Replication, the TensorFlow only generates one model 

graph which is divided and assigned to each worker and the 

final output is aggregated. On the contrary, Between-Graph 

Replication generates similar graphs in each worker, 

reducing the communication overheads. In general, 

Between-Graph Replication is more widely used than In-

Graph Replication method. Thus, we use Between-Graph 

Replication for enabling the data parallelism. 

2) Deep neural network models and datasets 

For our experiments, we use AlexNet [20], CIFAR10 (not a 

dataset [4], please refer to footnote 1), Network in Network 

[24], ResNet [14], and SqueezeNet [17] models, which are 

very widely used in real-world image classification tasks. 

We use a dataset available in [4], which has 60,000 (50,000 

for training and 10,000 for testing) 32X32 color images. For 

model training, we use a batch size of 32. 

3) Computing devices for distributed DNN training 

We use three heterogeneous computing devices: high-end, 

mid-end, and low-end devices. For high-end device, we use 

a high-performance desktop PC that equips Intel i7-2600 

quad-core CPU and Nvidia GTX1050 GPU. For mid-end 

and low-end devices, we use Nvidia Jetson TX2 (JTX2) and 

TX1 (JTX1), respectively. Fig. 4 demonstrates our available 

hardware devices, their specifications, and connection 

architecture. Three devices are connected via a switching 

hub to compose a cluster connected via local Ethernet 

connection. 

4) Miscellaneous 

For our framework implementation, we use paramiko [8] 

providing both client and server functionalities by a python 

implementation of the SSHv2 protocol. In addition, since we 

need to measure network bandwidth in runtime, we use iperf 

[7]. Ethtool [6] is also used to forcibly restrict the available 

network bandwidths for our experiments. To actually 

measure power consumption from the devices (for linear 

regression and comparison of our estimated results with the 

actual measured results), we use HPM-300A power meter [1] 

and on-board power monitoring circuit for Desktop PC and 

JTX1/JTX2, respectively. To capture network bandwidth 

impacts, we carry out our experiments with three different 

network bandwidths (1Gbps, 100Mbps, and 10Mbps) by 

 

Fig. 4. Experimental environment and device specifications.  
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GPU : 256-core Pascal GPU
RAM : 8GB LPDDR4 
Disk : 32GB eMMC

Switching Hub

High-end: Desktop PC

Mid-end: Jetson TX2

Low-end: Jetson TX1



using Ethtool. 

B. Training Cluster Model Prediction Results 

In this subsection, we evaluate whether or not our 

framework finds the actual best device cluster configuration. 

We compare the cluster configuration estimated by our 

framework and the configuration which actually leads to the 

best results. Depending on the DNN service providers’ 

preferences, our model can select different configurations. 

Since we use three computing devices for cluster 

composition, possible cluster configurations are: 

- Single device training 

 Config 1: JTX2 GPU  

 Config 2: JTX1 GPU 

 Config 3: Desktop PC GPU 

- Distributed training with 2 devices 

 Config 4: Parameter Server (Desktop PC CPU)  

↔ 2 workers (Desktop PC GPU and JTX2 GPU) 

 Config 5: Parameter Server (Desktop PC CPU)  

↔ 2 workers (Desktop PC GPU and JTX1 GPU) 

 Config 6: Parameter Server (JTX2 CPU)  

↔ 2 workers (JTX2 GPU and JTX1 GPU) 

- Distributed training with 3 devices 

 Config 7: Parameter Server (Desktop PC CPU)  

↔ 3 workers (Desktop PC GPU, JTX2 GPU, and 

JTX1 GPU). 

For αT
i , βT

i, k, αP
i, and βP

i, k values used in our 

experiments, we use the parameters empirically obtained. 

The αT
i , βT

i, k, αP
i, and βP

i, k values of 1.0 mean there is no 

training time or power impact from the parameter 

communication or network bandwidths. The larger adjusting 

factor values we have, the larger training time or power 

impact we exhibit from the parameter configuration or 

network bandwidths. 

1) Framework accuracy 

In this subsection, we show the results of our framework 

accuracy. The accuracy is a ratio between the number of the 

cases our framework selected the actual best configuration 

among seven configurations and the total number of the 

cases. In our experiments, the total number of the cases are 

240 (5 models ×  4 repetitions ×  4 preferences ×  3 network 

bandwidths). To smooth out any discrepancies and 

fluctuations, we repeat the experiments four times (i.e., four 

repetitions) for each combination of DNN service provider’s 

preference, network bandwidth, and DNN model. In order to 

figure the framework accuracy out, we actually measured 

training time, power, energy, and EDP for all 105 cases (5 

models × 3 network bandwidths × 7 configurations). We 

then compare whether or not the selection from our 

framework is matched to the configuration that leads to the 

actual best result.  

As shown in Fig. 5, our training cluster model actually 

selects the best and second-best configurations by over 

95.83% accuracies. Overall, the selection accuracy of our 

framework for choosing the best device cluster 

configuration is 76.67% (=184/240). Even in the case where 

our framework could not choose the best configuration, our 

framework chooses the second-best configurations for 82.14% 

(=46/56) of the remaining cases. In the cases of AlexNet, 

CIFAR10, NiN, ResNet, and SqueezeNet, the accuracies are 

75.00%, 87.50%, 75.00%, 70.83%, and 75.00%, 

respectively. The reason why our framework does not lead 

to 100% accuracy is mainly because our training time and 

power estimation method cannot predict the actual training 

time and power consumption with 100% accuracy. To 

improve the accuracy, we can perform pre-training with 

more number of steps (i.e., >100 steps) though it also 

introduces more training time overhead. We believe there 

can be an optimal point that balances accuracy and training 

time overhead though the detailed investigation is our future 

work. 

Fig. 6 summarizes the actual reductions of the training 

time, power, energy, and EDP when adopting our framework. 

Our framework leads to training time, power, energy, and 

EDP reductions by 45.5%, 4.5%, 31.6%, and 27.6%, 

respectively, compared to the actual second-best 

configurations (i.e., the second-best configurations derived 

from the actual measurements, not from our framework), on 

 

Fig. 5. Cluster selection accuracy of our proposed framework. 

 

Fig. 6. Normalized training time, power, energy, and EDP results when we perform DNN training with the chosen cluster configuration by our framework 

compared to the actual (measured, not from our framework) second-best cluster configuration results. The results less than 1.0 mean that our framework 

picked the actual best configurations. If the results are equal to 1.0, our framework selected the second-best configuration. If the results are higher than 1.0, 

our framework selected other cluster configuration which is worse than the second-best cluster configuration. 
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average. In addition to accurately predicting the best cluster 

configuration, our framework actually results in better 

training time, power, energy, or EDP of the distributed DNN 

training cluster. 

2) Training time overhead 

Fig. 7 shows the training time overhead incurred by our 

framework. Our framework actually increases training time 

by 0.69%~15.09% compared to the case where we run the 

DNN training with the same configuration without our 

framework. The main reason for training time increase is 

that our framework needs to collect the data required for 

training cluster model and calculate estimated training time, 

power, energy, and EDP for each possible cluster 

configuration. In addition, we need to compare and sort TT
j, 

PT
j, ET

j, and EDPT
j results to determine which configuration 

is the best one depending on DNN service providers’ 

preferences. However, our actual training time reduction 

compared to the case of second-best cluster configuration is 

more than 45%, sufficiently offsetting the training time 

overheads. 

As shown in Fig. 7, smaller models (e.g., SqueezeNet 

and CIFAR10) tend to show the larger training time 

overhead. This is because the absolute time our framework 

additionally adds to the total training time (e.g., power 

estimation, training cluster model, cluster selection, etc.) is 

almost same across the models. It means that the relative 

training time overhead for the large DNN models (i.e., 

longer training time) tends to be less than the small DNN 

models. Though the results shown in Fig. 7 are obtained by 

running 100,000 steps for training, if we run more steps (i.e., 

> 100,000 steps), training time overhead will be further 

reduced.  

V. CONCLUSIONS 

In this paper, we propose a novel framework that can 

determine the best device cluster configuration with 

heterogeneous computing devices when running DNN 

training. Through the pre-training phase, depending on 

DNN service providers’ preferences, our framework finds 

the best cluster configuration from the given hardware 

devices and DNN model with our training time, power, 

energy, and EDP models. After determining the cluster 

configuration for distributed DNN training, our framework 

actually performs the DNN training tasks with the selected 

device cluster configuration. From our experimental results, 

our framework chooses the best configuration for 76.67% of 

the total cases. For 82.14% of the remaining cases, our 

framework also chooses the second-best configurations. As 

our future work, we will 1) evaluate our framework with 

more diverse heterogeneous devices, 2) consider diverse 

network bandwidths, and 3) also consider the data 

synchronization impact.  
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