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Abstract—Technological advancements in embedded systemsthe sensor node. Challenges include accurately detergninin
due to Moore’s law have lead to the proliferation of values using environmental stimuli prediction/simulatio
wireless sensor networks (WSNs) in different application and static methods are not appropriate for applications

domains (e.g. defense, health care, surveillance systemsjth ith . . tal stimuli. Alt tivel .
different application requirements (e.g. lifetime, relisbility). ~W'tN Varying environmental stimuil. Alterna ivelydlynamic

Many commercial-off-the-shelf (COTS) sensor nodes can be Optimizationsassign (and re-assign/change) parameter values
specialized to meet these requirements using tunable paraters during runtime enabling the sensor node to adapt to
(e.g. voltage, frequency) to specialize the operating s&t changing environmental stimuli, and thus more accurately
Since a sensor node’s performance depends greatly oN meet application requirements.

environmental stimuli, dynamic optimizations enable sensr Th it h h in th fd .
nodes to automatically determine their operating state insitu. ere exists much research In the area of dynamic

However, dynamic optimization methodology development gen Optimizations (e.g. [2][3][4][5]), but most previous work
a large design space and resource constraints (memory andtargets the processor or memory (cache) in computer
computational) is a very challenging task. In this paper, we systems. There exists little previous work on WSN dynamic
propose a lightweight dynamic optimization methodology tt  4imization, which presents a more challenging endeavor
intelligently selects initial tunable parameter values toproduce a . . . .

high-quality initial operating state in one-shot for time-critical glve_n a unique design space, resour(_:e const_ralnts, aridrpiat

or highly constrained applications. Further operating stae Particulars as well as WSN operating environment. Shenoy
improvements are made using an efficient greedy exploration et al. [6] dynamically profiled a sensor-based platform to

algorithm, achieving optimal or near-optimal operating states gather profiling statistics, but did not perform optimipais.
while exploring only 0.04% of the design space on average. _In prior work, Munir et al. [1] proposed a Markov Decision
Index Terms— ~Wireless = sensor networks, — dynamic Process (MDP)-based methodology as a first step towards
optimization, optimization algorithms ; oo ) .
WSN dynamic optimization, but however this method required
a high-performance base station and could not be run on
a sensor node autonomously. Kogekar et al. [7] proposed
Due to embedded technology and wireless communicatidgnamic software reconfiguration to adapt software to new
advancements, wireless sensor networks (WSNs) hayserating conditions, but however, that work did not coasid
proliferated in many application domains (e.g. defensalthe sensor node tunable parameters and application requitemen
care, surveillance systems) each with varying applicati@ome previous works explored greedy, simulated annealing
requirements (e.g. lifetime, reliability). This divessimakes (SA), and particle swarm optimization (PSO)-based WSN
it difficult for commercial-off-the-shelf (COTS) sensora&s optimizations [8], but these previous works did not analyze
to meet these application requirements. their algorithms’ resources or computational complexity.
Since COTS sensor nodes are mass-produced (to optinfieally, some previous works explored WSN dynamic voltage
cost), many COTS sensor nodes possess tunable parameteds frequency scaling (DVFS) [9][10]. Although DVFS
(e.g. processor voltage and frequency, sensing frequengypvides a mean for dynamic optimization, previous workyonl
whose values may béuned for application specialization considered two sensor node tunable parameters (processor
[1]. However, given the large design space, determiningltage and frequency).
appropriate parameter values (operating state) is clysign ~ WSN dynamic optimization presents additional challenges
Typically, sensor node vendors assign an initial generialtle as sensor nodes have more tunable parameters and a larger
parameter setting, however, no one tunable parametengettiesign space. The dynamic profiling and optimization (DPOP)
is appropriate for all applications. project aims to address these challenges and complexities
Parameter optimizationis the process of assigningassociated with sensor-based system design through the use
appropriate (optimal or near-optimal) tunable parametef automated optimization methods [11]. The DPOP project
values, either statically or dynamically to meet applimati has gathered dynamic profiling statistics from a sensoedas
requirementsStatic optimizationsssign parameter values asystem, however, the parameter optimization process remai
deployment and these values remain fixed for the lifetime & be completed. In this paper, we investigate an apprapriat

I. INTRODUCTION AND MOTIVATION



approach to implementing the parameter optimization given T rar Senmorbode stion Hotice .
the dynamic profiling data already collected from the platfo Dynamic Optimization Loy Rdets
We analyze possible ways to achieve dynamic optimization T 7 N
and evaluate algorithms that can provide a good operatitg st A i
without depleting the battery energy significantly. We expl e
a large design space with many tunable parameters and value/

This expansion provides a finer-grained design space, iegabl | ‘
sensor nodes to more closely meet application requirement!
(Gordon-Ross et al. [12] showed that finer-grained design’
spaces contain interesting design alternatives and resul \
in increased benefits in the cache subsystem). However '
the large design space exacerbates optimization chaienge ! -
taking into consideration a sensor node’s constrained mgmo i
and computational resources. Additionally, rapidly chiagg \
application requirements and environmental stimuli cedpl e ITmmeee
with limited battery reserves necessitates a highly resipen
and low overhead methodology.

Our main contributions in this paper are:

« We propose a light-weight dynamic optimizatior[jet‘?rmine an appropriate_ op_erating s'gate (tl_Jnab_Ie paeamet
methodology that is able to determine appropriate initi§Etings) using an application metric estimation model.
tunable parameter values to give a one-shot solution. THi8iS model determines high-level application metric value
one-shot solution provides a good quality operating Sta@grre_spondlng to the tunable parameter settings. This mode
with minimal design exploration for highly constrainedi€tails are left for future work.
applications. Results reveal that this one-shot operatingFig- 1 shows the per-node dynamic optimization process
state is within 5.92% of the optimal solution (determineencompassed by the dashed circle), which is orchestrated
by exhaustive search) averaged over several differdit the dynamic optimization controllefThe process consists
application domains and design spaces. of two operating modes: th@ne-shot modewherein the

« Our dynamic optimization methodology combines th&ensor node operating state is directly determined and the
initial tunable value selection with an intelligentmprovement modevherein the operating state is iteratively
exploration ordering of tunable parameter values adgiProved using an online optimization algorithm. The
an exploration arrangement of tunable parameters, sirf@amic optimization process consists of three steps. én th
some parameters are more critical for an applicatidist Step, the dynamic optimization controller intelligign
than others and thus should be explored first [5] (e.getermines the initial parameter value settings (opeyatiate)
transmission power parameter may be more critical forafdd exploration order (ascending or descending), which is
lifetime sensitive application than processor voltage). Cfitical in reducing the number of states explored by the

« Although greedy-based algorithms and approaches dpgprovement mode. In the one-shot operation mode, the
not novel in general, we propose, for the first timegdynamic optimization process is complete and the sensor
an online greedy algorithm that leverages intelligefitode moves directly to the operating state specified by the
parameter arrangement and explores the design spacé¢al parameter value settings. In the improvement mode,
improve over the one-shot solution to find the optimdhe second step determines the parameter arrangement based
(or near optimal) operating state. Results reveal that 0@ application metric weight factors (e.g. explore prooess
greedy exploration of tunable parameters results in ¥Rltage then frequency then sensing frequency). The third
operating state within 2.5% of the optimal operating stafé€P invokes aronline optimization algorithnfor parameter
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Fig. 1. Our dynamic optimization methodology for wirelessisor networks.

while exploring only 0.04% of the design space. exploration to iteratively improve the operating state toren
closely meet application requirements. The online opttiin
Il. DYNAMIC OPTIMIZATION METHODOLOGY algorithm leverages the intelligent initial parameter veal

Fig. 1 depicts our dynamic optimization methodology fosettings, exploration order, and parameter arrangement. A
WSNs. WSN designers evaluate application requirements afyhamic profiler records profiling statistics (e.g. processor
capture these requirements as high-level applicationicsetrvoltage, wireless channel condition, radio transmissiowey)
(e.g. lifetime, throughput, reliability) and associateeight given the current operating state and environmental stiamal
factors. The weight factors characterize application iw&tr passes these profiling statistics to the dynamic optintpati
relative importance, e.g., since some WSN applications megntroller.
not be power-centric and throughput may be more importantThe dynamic optimization controller processes the prafilin
than the lifetime, assigning a higher weight factor fostatistics to determine whether the current operatinge stat
throughput than lifetime can capture this relationshipe Thmeets the application requirements. If the application
sensor nodes use application metrics and weight factorsréguirements are not met, the dynamic optimization coletrol



reinvokes the dynamic optimization process to determimee th 1.(s)
new operating state. This feedback process continues tomens
that the application requirements are best met under chgngi
environmental stimuli. Details of this process are leftfidure
work.

I1l. DYNAMIC OPTIMIZATION FORMULATION Fig. 2. Reliability objective functioy, (s).

In this section, we formulate the state space and the

objective function for our dynamic optimization. f+(s), and f,.(s), respectively. We defing.(s) (Fig. 2) using
the piecewise linear function:

A. State Space

1, sy 2 Br
e A i optmiztor G, + gt U< <
frls) =4 Cp, + Cuilullnln) <, <1,
S=P xPyx-x Py 1) Cl, - =2, o < sp < Ly

0, Sp < Qup.

whereP; denotes the state space for tunable parametér €
{1,2,...,N} and x denotes the Cartesian product. EaCG/heres
tunable parameteP; consists ofn values: §

(5)
denotes the reliability offered by statethe constant
parametersL, and U, denote thedesired minimum and
@) maximum reliability, and the constant parametersand (3,
denote theacceptablaminimum and maximum reliability. The

where |P,| denotes the tunable paramet&f state space piecewise linear objective function provides WSN designer
cardinality (the number of tunable valuesi). S is a set of with a flexible gpplication requirement specification, as i.t
n-tuples formed by taking one tunable parameter value frgd{oWs both desirable and acceptable ranges. The objective

each tunable parameter. A single n-tuple S is given as: function reward gradient (slope) would be greater in the
desired range than the acceptable range, however, theld wou

s = (p1,,p2,,----PN,) : Pi, € P, be no reward for operating outside the acceptable range. The
Vie{l,2,....N},ye{l,2,....n} 3) constant paramete€®;, ., Cy,, andCg, in (5) denote thef,.(s)
value atL,, U,, andg,., respectively.
Each n-tuple represents a sensor note operating state. e po The fi(s) and fi(s) can be defined using increasing
out that some n-tuples ifi may not be feasible (such as invalidPiecewise linear functions similar to (5) as higher valués o
combinations of processor voltage and frequency) and canlietime and throughput (like reliability) are typicallyedirable

Pi = {pilapizvpiga- --7pin,} : |Pz| =n

regarded aslo not caretuples. and correspond to higher objective function values. Altitou
we define our objective functions using piecewise linear
B. Optimization Objection Function objective functions, our dynamic optimization methodglog

) o works well for any other characterization of objective
The dynamic optimization problem can be formulated as;,tions (e.g., linear, non-linear).

IV. ALGORITHMS FORDYNAMIC OPTIMIZATION

max f(s) = > wifi(s)
k=1

METHODOLOGY
st. s€S In this section, we describe the three steps, associated
wpe >0, k=1 m algorithms, and operating modes for our dynamic optimizati

methodology (Section 1). Step one determines initial tiab
* parameter values and exploration order (ascending or
Z“’k -1 4) descending). Imne-sh_ot modeéF|g._ 1), th_ese mmal tunable_
= ’ parameter value settings result in a high-quality opegatin
state in one-shot (no additional design space explorafmm)
where f(s) denotes the objective function which capturespplications with tight constraints (e.g. limited explioa
application metrics and weight factorgy(s) and wy in time due to a rapidly changing environment). For applicgatio
(4) denote the objective function and weight factor for thaith more flexible constraints, the@mprovement mode
k™ application metric, respectively, given that there are encompasses steps two and three and iteratively improees th
application metrics. one-shot solution. Step two determines the tunable pammet
For our dynamic optimization methodology, we considezxploration arrangement based on the application metric
three application metricsn{ = 3), lifetime, throughput, and weight factors (i.e. some parameters are more critical for a
reliability, whose objective functions are denoted fiys), application than others and should be explored first). Steget

wkgl, k=1,2,...



leverages the outcomes of steps one and two and explofleses 11-13). ThisSfl’gi calculation procedure is repeated for
the design space using an online optimization algorithnn. Fall m application metrics and alN tunable parameters (lines
this optimization algorithm, we propose a lightweight ghge 1-16).

algorithm for design space exploration, however, stepethr%

can be generalized to any online algorithm. - Parameter Arrangement

N ) ) Depending on the application metric weight factors,
A. Initial Parameter Value Settings and Exploration Order gome parameters are more critical to meeting application

Input: f(s), N, n, m,P requirements than other parameters. For example, sensing
Output: Initial tunable parameter value settings and exploration frequency is a critical parameter for applications with ghhi
L for b (_?“tjg’rm do responsiveness weight factor and therefore, sensingédrayu
2 for P, — P, to Py do should be explored first. In this subsection, we devise a
3 f;jil «— k-metric objective function value when parameter technique for parameter arrangement such that parameters
setting is {P; = pi,, Pj = Pj,,Vi# j} | are explored in an order characterized by the parameter's
4 fp,,, “— k-metric objective function value when parameter  jmhact on application metrics based on relative weighifact
setting is {P; = p;,,, Pj = Pj,,Vi# 5} ; i i i
5 ofk — 1k — i Our paramgter arrqngement techmque is based on calagatio
6 if o >0then performed in Algorithm 1. We define:
: explore 1%, In descending order; Ve = {VIh Vb VIR ©)
o PHi] — b ; . o
1 olse whereV fp is a vector containing/ f5,vk € {1,2,...,m}
1 explore P; in ascending order ; arranged in descending order by their respective valuessand
12 P¥[i] «— ascending ; given as:
13 PZ“ [i] — pf k k k k
14 O|end pr = {5fP155fP27"'55fPN}
ienden Do ofpl = 10fp, L Vie{1,2,...,N =1} (7)

k k
retun Py, Py, vk € {1,...,m} The tunable parameter arrangement ved®5r corresponding

Algorithm 1: Initial tunable parameter value settings aneéb V f£ (one-to-one correspondence) is given by:

exploration order algorithm. X P X
) ) ) o P*={P’, Py, ....,Py},Vke{l1,2,...,m} (8)
Algorithm 1 describes our technique to determine initial

tunable parameter value settings and exploration ordest (fi\n intelligent parameter arrangemeft must consider all
step of our dynamic optimization methodology). The algorit application metrics’ weight factors with higher importanc
takes as input the objective functiof(s), the number of given to higher weight factors, i.e.:

tunable parameterd’, the number of values for each tunable P — (p! pl_p2 p2
o X = {P,....,P,,P},..., P,
parametemn, the number of application metrics, and P 5 3 " -
whereP represents a vector containing the tunable parameters, Py Py P P 9)
p = {P1,P,...,Py}. For each application metrig, the \yhere , denotes the number of tunable parameters taken
algorithm calculates vectoB) and P% (whered denotes the from p* Vi ¢ {1,2,...,m} such thatX" I, = N.

exploration direction (ascending or descending)), whithies oy technique allows taking more tunable parameters from

the initial value settings and exploration order, respetfi parameter arrangement vectors corresponding to highghtvei
for the tunable parameters. The algorithm determinesithe factor application metrics, i.6, > ly411,Vk € {1,2,...,m—

- S ) .
application metric objective function valueg, and f; 1}. In (9), I; tunable parameters are taken from vector

where the parameter being exploréll is assigned its first p1  ihen I, from vector P2, and so on tol,, from
pi; and lastp; tunable values, respectively, and rest of thgactor P™ such that{ Pk PFyn {Plkfl Py =
oo B e

. . . L . Iy
tunable parametet;,V j # ¢ are assigned initial values (|II’1€S®’ Vk € {2,3,...,m}. In other words, we select thoksel tunable

3-4). dfp, stores the difference betweeff, and f;; . For parameters from parameter arrangement vectors correisgond
g, > 0, pi, results in a greater objective function value ag ower weight factors which are not already selected from
compared tg;, for parameter?’; (i.e. the objective function parameter arrangement vectors corresponding to highgttvei
value decreases as the parameter value decreases). Teer&fxtors (i.e. P comprises of disjoint or non-overlapping
to reduce the number of states explored while considerifghable parameters corresponding to each applicatiorichetr
that the greedy algorithm (Section IV-C) will stop expl@in |n the situation where weight factar is much greater than

a tunable parameter if a tunable parameter’s value yieldsa@ other weight factors, an intelligent parameter arranget
comparatively lower objective function valug;’s exploration P would correspond to the parameter arrangement for the

order must be descending (lines 6-8). The algorithm assigasplication metric with weight factap, i.e.:
pq,, as the initial value of?; for the ™ application metric (line ~

9). If 5fE < 0, the algorithm assigns the exploration order P=P' = {P,P,....Py}
as ascending foP; andp;, as the initial value setting oP; S w1 > wg, Vee{2,3,...,m} (10)



The initial parameter value vectAd?’g and exploration order parameter arrangemen®(Nmlog N) (sorting Ve (7)
(ascending or descending) vectBy corresponding taP (9) contributes the Nlog NV factor) (Section IV-B), and the
can be determined fro® (9), P*, andP’c Vke{l,. m} online optimization algorithm for parameter exploration
(Algorithm 1) by looking at the tunable parameter fraf  (Algorithm 2) O(Nn). Assuming that the number of tunable
and finding the tunable parameter’s initial value frd?é? and parametersV is larger than the number of parameter’s tunable
exploration order fromP¥. valuesn, the computational complexity of our methodology
can be given a®)(Nmlog N). This complexity reveals that

C. Online Optimization Algorithm our proposed methodology is lightweight and is thus feasibl

Input: f(s), N, n, P, Py, Py for implementation on sensor nodes with tight resource
Output: Sensor node state that maximizes f(s) and the constraints.
__corresponding f(s) value _ V. EXPERIMENTAL RESULTS
1 k « initial tunable parameter value settings from Py ; .
2 fpest — solution from initial parameter settings « ; A. Experimental Setup
3 for P — Py to Py do _ o Our experimental setup is based on the Crossbow IRIS mote
g f;‘;:gﬁ gf " ?;?en;mg/ de?_en}d('j”og order suggested by Fy ; platform [13] with a battery capacity of 2000 mA-h using two
po Feemp — current state ¢ solution ; AA alkaline batteries. The IRIS mote platform integrates an
7 if fremp > foese then Atmel ATmegal281 microcontroller [14], an MTS400 sensor
S gbft; fremp ; board [15] with Sensirion SHT1x temperature and humidity
10 else ’ sensors [16], and an Atmel AT-86RF230 low power 2.4 GHz
11 | break; transceiver [17].
E end end We analyze six tunable parameters: processor voligge
14 end processor frequendy,, sensing frequency, packet sizes,
return &, foest packet transmission interval;, and transceiver transmission

power P;,.. In order to explore the fidelity of our methodology
across small and large design spaces, we consider two design
space cardinalities (number of states in the design sp&ate)

The third step of our dynamic optimization proces$ag and|S| = 31,104. The tunable parameters f@| = 729
uses a greedy lightweight online optimization algorithm f0areV ={2.7,3. 3 4 (volts), F,, = {4, 6, 8 (MHz) [14], F, =
tunable parameters exploration in an effort to determine a, 2 3 (samples per SeCOﬂd) [16F. = {41, 56, 64 (bytes),
better operating state than the one obtained from step one = {60, 300, 600 (seconds), and., = {-17, -3, 1} (dBm)
(Section IV-A). Algorithm 2 depicts our online optimizatio [17]. The tunable parameters fpg| = 31,104 areV, = {1.8,
algorithm, which leverages the initial parameter valug7 33, 4, 4.5 5 (volts), E, = {2, 4, 5 8, 12, 15 (MHz)
settings (Section IV-A), parameter value exploration ord({al4] F, ={0.2,05, 1, 2, 3 % (samples per second) [16],
(Section IV-A), and parameter arrangement (Section IV-By = {32, 41, 56, 64, 100, 137(bytes), P,; = {10, 30, 60,
The algorithm takes as input the objective functitfs), the 300, 600, 1209 (seconds), and’,, = {-17, -3, 1, 3 (dBm)
number of tunable parameter$, the number of values for [17]. All state space tuples are feasible 6t = 729, whereas
each tunable parameter the tunable parameters’ vect#t, | 5| = 31,104 contains 7,779 infeasible state space tuples (e.g.
the tunable parameters’ initial value vecy, and the tunable all v, andF pairs are not feasible).
parameter’s exploration order (ascending or descendepv | “order to evaluate the robustness of our methodology
P,. The algorithm initializes state: from Py (line 1) and across different applications with varying applicationtrize
feest With s objective function value (line 2). The algorithmweight factors, we model three sample application domains
explores each parameter If) (9) in ascending or descending(a security/defense system, a health care application, and
order as given byP; (lines 3-4). For each tunable parametesn ambient conditions monitoring application) and assign
P; (line 5), the algorithm assigng...,, the objective function application specific values for the desirable minimum
value from the current stat€ (line 6). If ficmp > foest L, desirable maximumU, acceptable minimuma, and
(increase in objection function valuejic,, is assigned to acceptable maximun® objective function parameter values
feest @and the state is assigned to staté (lines 7-9). If for application metrics (Section I1I-B). Our selected atijee
fremp < foest, the algorithm stops exploring the currentunction parameter values and application metric weight
parameter?; and starts exploring the next tunable paramet@ictors represent typical application requirements [18].
(lines 10-12). The algorithm returns the best found objecti Although, we analyzed our methodology for the IRIS motes
function valuef;..; and the state corresponding tQfy.s:- platform, three application domains, and two design spaces
our algorithms are equally applicable to any platform,

D. Computational Complexity
apphcatlon domain, and design space.
The computational complexity (running time and storage)

for our dynamic optimization methodology &(Nmlog N + B. Results
Nn), which is comprised of the intelligent initial parameter For comparison purposes, we implemented a simulated
value settings and exploration ordering (Algorithm@)Nm), annealing (SA)-based algorithm, our greedy online

Algorithm 2: Online optimization algorithm for tunable
parameters exploration.



TABLE |
GREEDY ALGORITHMS WITH DIFFERENT PARAMETER ARRANGEMENTS AB EXPLORATION ORDERS

Notation | Description |

GD Our greedy algorithm with parameter exploration ord®y and arrangemenP
GDascA Explores parameter values in ascending order with arraegest = {Vj, F}, Fs, Ps, Pii, Pia}
GD?ascB Explores parameter values in ascending order with arraageth = {Pi., Pi;, Ps, Fs, Fp, Vp}

GDascC Explores parameter values in ascending order with arraegeth= {Fs, Pi, Piz, Vp, Fp, Ps}

GDdesD Explores parameter values in descending order with arraegeD = {V,, Fp, Fs, Ps, Py, Piz }
GDdesE Explores parameter values in descending order with arraegef = { Pis, Py, Ps, Fs, Fp, Vp}
GDdesF Explores parameter values in descending order with arraegeF = {Ps, Fp, Vp, Pio, Pti, Fis}

Clsa
| [Beom== |
|- -GDdESE 4
| (G : : i

SO O © O 9
v o N o ©

Normalized Objective Function
o
Y

Normalized Objective Function

o
w

o
)

o
o

o

8 10 12 50 100 400 3 4 6 8 10 B B 400
Number of States Explored Number of States Explored

Fig. 3. Objective function value normalized to the optimaluson for a Fig. 4. Objective function value normalized to the optimalution for a
varying number of states explored for SA and the greedy #igos for a varying number of states explored for SA and greedy algmstlior a health
security/defense system whevg = 0.25, wy = 0.35, wr = 0.4, |S| = 729.  care application where; = 0.25, wy = 0.35, w, = 0.4, |S| = 729.

optimization algorithm (GD) (which leverages intelligenthat GD converged to the optimal solution slightly fastearth
initial parameter value selection, exploration orderingather greedy algorithms, exploring only 1.1% of the design
and parameter arrangement), and several other greedyeondipace. The order in which greedy algorithms explore tunable
algorithm variations (Table I) in C/C++. First, we evaluate parameters (e.g/,, thenF,, and so on, etc.) affect the number
methodology and algorithms with a desktop implementatiaf iterations for convergence similarly to how the order of
to reduce the analysis time and study the feasibility of owariables in a binary decision diagram (BDD) impacts the
algorithms for a dynamic environment. We compared owize of the tree and processing speed [19].23&bconverges
results with SA to provide relative comparisons of greedp a better solution than GIB® showing that ascending
algorithms with another heuristic algorithm. We compareglarameter values exploration is better for a securityftefe
GD results with different greedy algorithm variations (lal) system with the given weight factors. In addition, the SA
to provide an insight into how initial parameter value s&ti, algorithm outperforms all greedy algorithms and convetges
exploration ordering, and parameter arrangement affeet tiie optimal solution follS| = 729 after exploring 400 states
final operating state quality. We normalized the objectii®4.9% of the design space). Fig. 3 also verifies the ability o
function value (corresponding to the operating state)retth our methodology to determine a good quality (near-optimal)
by the algorithms with respect to the optimal solutiosolution in one-shot, as GD achieves only a 1.83% percentage
obtained using an exhaustive search. We analyzed theveelatmprovement over the initial state after exploring 8 states
complexity of the algorithms by measuring the execution Fig. 4 shows the objective function value normalized to the
time and data memory requirements. Note that for brevityptimal solution versus number of states explored for atheal
our presented results are a subset of the greedy algorithease application fotS| = 729. Fig. 4 shows similar trends as
listed in (Table 1), the application domains, and the desigeen in Fig. 3 for convergence rates on all algorithms, GD’s
spaces. However, we evaluated all the greedy algorithms ame-shot solution quality, and GBs superior solution as
application domains and the subset presented in this secttwmpared to GEfE
is representative of all greedy algorithms and application Fig. 5 shows the objective function value normalized to
domain trends and characteristics. the optimal solution versus number of states explored for an
Fig. 3 shows the objective function value normalized tambient conditions monitoring application fof| = 31, 104.
the optimal solution versus number of states explored for@D converges to the optimal solution after exploring 13estat
security/defense system fo§| = 729. GD® GD%sP and (0.04% of design space), with a 16.69% improvement over
GD converge to a steady state solution after exploring lthe one-shot solution. G&F¢ and GI'*F converge to the
10, and 8 states, respectively. These convergence rebolts ssolution after exploring 9 and 7 states, respectively. €hes



TABLE Il
PERCENTAGE IMPROVEMENT ATTAINED BY GD AFTER ONE STATE EXPLORATION WHEN|S‘ = 729.

Application Domain GD®A | GD*B | GD*C [ GDU"sP | GDUSE | GDIesF
Security/Defense System 155.06% | 155.06% | 155.06% | 439.56% | 22.9% 9.2%
Health Care 78% 78% 78% 211.78% | 14.1% | 6.64%

Ambient Conditions Monitoring| 51.81% | 51.81% | 51.81% | 142.89% | 39.85% | 6.09%

TABLE Il
PERCENTAGE IMPROVEMENT ATTAINED BY GD AFTER ONE STATE EXPLORATION WHENS| = 31, 104.
Application Domain GD* | GD*B | GD¥C | GDUsP | GDUsE | GDIesF
Security/Defense System 147.97% | 147.97% | 147.97% | 435.09% | 13.66% | 0.33%
Health Care 73.42% 73.42% 73.42% | 218.77% | 11.47% 0.3%
Ambient Conditions Monitoring 0% 0% 0% 146.97% | -8.24% | 75.61%
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‘ and design space cardinalities. We point out that some
] arbitrary initial parameter settings may attain a slightigher
- | EmGot T normalized objective function value for a particular apation
[ [ea} . . . e
- and design space cardinality (e.g. initial parameterrgggtfor
. GDSE for ambient conditions monitoring application when
|S| = 31,104), but in general, the arbitrary selection would
not scale to other applications and design space card@salit
We performed data memory analysis for each step of
our dynamic optimization methodology (Section 1). Step
one (one-shot solution) requires only 150, 188, 248, and
416 bytes whereas step two requires 94, 140, 200, and
i [IMe 1M TaN [1Wg /8% WY [lwg |IAY [18Y [N 494 bytes for (number of tunable parametéy¥s number
Number of States Explored of application metricsm) equal to (3, 2), (3, 3), (6, 3),
Fig. 5.  Objective function value normalized to the optimalution for and (6, 6), respectively. For step three, we compared data
:n;’;ré’r']rt‘gcgﬁé?t?fgsokiﬁt;finzx‘ggﬁi‘i;t?énsahg g:regfjb}” ihf”:t fg;g” memory requirements for GD with SA for different design
wy = 0.15, |S| = 31, 104. space cardinalities. We observed that GD requires 458, 528,
574, 870, and 886 bytes, whereas SA requires 514, 582, 624,
convergence and percentage improvement results show $@20, and 936 bytes of storage for design space cardinalities
GD may explore more states than other greedy algorithmsoif 8, 81, 729, 31104, 46656, respectively. The data memory
state exploration provides a noticeable improvement dver tanalysis shows that SA has comparatively larger memory
one-shot solution. The figure also shows that SA convergegjuirements than the greedy algorithm. Our analysis tevea
to a near-optimal solution after exploring 400 states (%29that the data memory requirements for all three steps of our
of design space). These convergence results show that eygRamic optimization methodology increases linearly as th
though the design space cardinality increases by 43x, beflimber of tunable parameters, tunable values, and agplicat
heuristic algorithms (greedy and SA) still explore only @netrics (and thus the design space) increases. Furthermore
small percentage of the design space and result in highitgualhe data memory analysis verifies that although our dynamic
solutions. optimization methodology (all three steps) has low data
In order to prove the effectiveness of our intelligentnemory requirements, the one-shot solution (from step one)
initial parameter value selection technique (Section [y-Arequires 361.36% less memory on average.
we calculated the percentage improvements in the norndalize We measured the execution time for all three steps of
objective function value obtained by the intelligent iaiti our dynamic optimization methodology averaged over 10,000
parameter value settings over other arbitrary initial galwuns (to smooth any discrepancies in execution time due to
settings used in other greedy algorithms fdf| = 729 operating system overheads) on an Intel Xeon CPU running
(Table 1l) and |S| = 31,104 (Table Ill). Results reveal at 2.66 GHz [20] using the Linux/Uniki me command [21].
that our one-shot operating state using only intelligeittalh We scaled these execution times to the Atmel ATmegal281
parameter settings is within 5.92% of the optimal averagedicrocontroller [14] running at 8 MHz. Even though scaling
over several different application domains and designespacdoes not provide 100% accuracy for the microcontroller
Table 1l and Table 1l verify that our intelligent initial runtime because of different instruction set architecture
parameter settings technique (which gives a near-optinsgialing provides reasonable runtime estimates and enables
solution) provides substantial percentage improvemews orelative comparisons. Results showed that step one and step
other arbitrary initial settings for different applicatidlomains two required 1.66 ms and 0.332 ms, respectively, both for



|S| = 729 and |S| = 31, 104. For step three, we comparedhe exhaustive search fdS| 729 and |S] 31,104,

GD with SA. GD explored 10 states and required 0.88®spectively. Computational complexity analysis confidme
ms and 1.33 ms on average to converge to the solutitvat our methodology is lightweight and thus feasible for
for |S] 729 and |S| = 31,104, respectively. SA took sensor nodes with limited resources.

276 ms and 2.88 ms to explore the first 10 states (toFuture work includes the incorporation of profiling statist
provide a fair comparison with GD) fotS| = 729 and into our dynamic optimization methodology to provide
|S] 31,104, respectively. The other greedy algorithmé$eedback with respect to changing environmental stimuli. |
required comparatively more time than GD because thagdition, we plan to further verify our dynamic optimizatio
required more states exploration to converge than GD, butthodology by implementation on a hardware sensor node
however, all greedy algorithms required less executiore tinplatform.
than SA. To verify that our dynamic optimization methodglog

is lightweight, we compared the execution time results far o
dynamic optimization methodology (including all threepste ~ This work was supported by the National Science
with the exhaustive search. The exhaustive search requifedndation (NSF) (CNS-0834080) and Natural Sciences
29.526 ms and 2.765 seconds fi| 729 and |§| = and Engineering Research Council of Canada (NSERC).
31,104, respectively. Compared with the exhaustive searcfny opinions, findings, and conclusions or recommendations
our dynamic optimization methodology required 10.26x arfkpressed in this material are those of the author(s) and do
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832.33x less execution time fa| = 729 and|S| = 31,104, ot necessarily reflect the views of the NSF and NSERC.
respectively. The execution time analysis reveals that our
dynamic optimization methodology (including all threepste
requires execution time on the order of milliseconds, and”
the one-shot solution requires 138.32% less execution time
on average as compared to all three steps of the dynam[lzé
optimization methodology. Execution time savings attdine
by the one-shot solution as compared to the three steﬁ%
of our dynamic optimization methodology are 73.43% and4l
186.26% for GD and SA, respectively, whef]| 729,

and are 100.12% and 138.32% for GD and SA, respectivelys!
when |S| = 31,104. These results indicate that the design
space cardinality affects the execution time linearly and o [6
dynamic optimization methodology’s advantage increases a
design space cardinality increases. (7

(8]
(]

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a dynamic optimization
methodology for WSNs, which provided a high-quality
solution in just one-shot using an intelligent initial tinea
parameter value settings for highly constrained appbeeti [11]
Additionally, we proposed an online greedy optimization,
algorithm that leveraged intelligent design space exfiloma
techniques to iteratively improve on the one-shot solutiops
for less constrained applications. Compared with SA and
different greedy algorithm variations, results showed tree-
shot technique yielded improvements as high as 439.56%
over other arbitrary initial parameter settings. ResultBdated [1s]
that our greedy algorithm converged to the optimal (or neaitél
optimal) solution after exploring only 1.1% and 0.04% of the,;;
design space whereas SA explored 54.9% and 1.29% of the
design space fofS| = 729 and [S| = 31,104, respectively. (4
Data memory and execution time analysis revealed that our
one-shot solution (step one) required 361.36% and 138.32%%
less data memory and execution time, respectively, when
compared to using all the three steps of our dynam
optimization methodology. Results revealed that our dyinami21]
optimization methodology (including all three steps) rieed
10.26x and 832.33x less execution time as compared to

] (2010, May)
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