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Abstract—Technological advancements in embedded systems
due to Moore’s law have lead to the proliferation of
wireless sensor networks (WSNs) in different application
domains (e.g. defense, health care, surveillance systems)with
different application requirements (e.g. lifetime, reliability).
Many commercial-off-the-shelf (COTS) sensor nodes can be
specialized to meet these requirements using tunable parameters
(e.g. voltage, frequency) to specialize the operating state.
Since a sensor node’s performance depends greatly on
environmental stimuli, dynamic optimizations enable sensor
nodes to automatically determine their operating state in-situ.
However, dynamic optimization methodology development given
a large design space and resource constraints (memory and
computational) is a very challenging task. In this paper, we
propose a lightweight dynamic optimization methodology that
intelligently selects initial tunable parameter values toproduce a
high-quality initial operating state in one-shot for time-critical
or highly constrained applications. Further operating state
improvements are made using an efficient greedy exploration
algorithm, achieving optimal or near-optimal operating states
while exploring only 0.04% of the design space on average.

Index Terms— Wireless sensor networks, dynamic
optimization, optimization algorithms

I. I NTRODUCTION AND MOTIVATION

Due to embedded technology and wireless communication
advancements, wireless sensor networks (WSNs) have
proliferated in many application domains (e.g. defense, health
care, surveillance systems) each with varying application
requirements (e.g. lifetime, reliability). This diversity makes
it difficult for commercial-off-the-shelf (COTS) sensor nodes
to meet these application requirements.

Since COTS sensor nodes are mass-produced (to optimize
cost), many COTS sensor nodes possess tunable parameters
(e.g. processor voltage and frequency, sensing frequency),
whose values may betuned for application specialization
[1]. However, given the large design space, determining
appropriate parameter values (operating state) is challenging.
Typically, sensor node vendors assign an initial generic tunable
parameter setting, however, no one tunable parameter setting
is appropriate for all applications.

Parameter optimization is the process of assigning
appropriate (optimal or near-optimal) tunable parameter
values, either statically or dynamically to meet application
requirements.Static optimizationsassign parameter values at
deployment and these values remain fixed for the lifetime of

the sensor node. Challenges include accurately determining
values using environmental stimuli prediction/simulation
and static methods are not appropriate for applications
with varying environmental stimuli. Alternatively,dynamic
optimizationsassign (and re-assign/change) parameter values
during runtime enabling the sensor node to adapt to
changing environmental stimuli, and thus more accurately
meet application requirements.

There exists much research in the area of dynamic
optimizations (e.g. [2][3][4][5]), but most previous work
targets the processor or memory (cache) in computer
systems. There exists little previous work on WSN dynamic
optimization, which presents a more challenging endeavor
given a unique design space, resource constraints, and platform
particulars as well as WSN operating environment. Shenoy
et al. [6] dynamically profiled a sensor-based platform to
gather profiling statistics, but did not perform optimizations.
In prior work, Munir et al. [1] proposed a Markov Decision
Process (MDP)-based methodology as a first step towards
WSN dynamic optimization, but however this method required
a high-performance base station and could not be run on
a sensor node autonomously. Kogekar et al. [7] proposed
dynamic software reconfiguration to adapt software to new
operating conditions, but however, that work did not consider
sensor node tunable parameters and application requirements.
Some previous works explored greedy, simulated annealing
(SA), and particle swarm optimization (PSO)-based WSN
optimizations [8], but these previous works did not analyze
their algorithms’ resources or computational complexity.
Finally, some previous works explored WSN dynamic voltage
and frequency scaling (DVFS) [9][10]. Although DVFS
provides a mean for dynamic optimization, previous work only
considered two sensor node tunable parameters (processor
voltage and frequency).

WSN dynamic optimization presents additional challenges
as sensor nodes have more tunable parameters and a larger
design space. The dynamic profiling and optimization (DPOP)
project aims to address these challenges and complexities
associated with sensor-based system design through the use
of automated optimization methods [11]. The DPOP project
has gathered dynamic profiling statistics from a sensor-based
system, however, the parameter optimization process remains
to be completed. In this paper, we investigate an appropriate



approach to implementing the parameter optimization given
the dynamic profiling data already collected from the platform.
We analyze possible ways to achieve dynamic optimization
and evaluate algorithms that can provide a good operating state
without depleting the battery energy significantly. We explore
a large design space with many tunable parameters and values.
This expansion provides a finer-grained design space, enabling
sensor nodes to more closely meet application requirements
(Gordon-Ross et al. [12] showed that finer-grained design
spaces contain interesting design alternatives and result
in increased benefits in the cache subsystem). However,
the large design space exacerbates optimization challenges,
taking into consideration a sensor node’s constrained memory
and computational resources. Additionally, rapidly changing
application requirements and environmental stimuli coupled
with limited battery reserves necessitates a highly responsive
and low overhead methodology.

Our main contributions in this paper are:

• We propose a light-weight dynamic optimization
methodology that is able to determine appropriate initial
tunable parameter values to give a one-shot solution. This
one-shot solution provides a good quality operating state
with minimal design exploration for highly constrained
applications. Results reveal that this one-shot operating
state is within 5.92% of the optimal solution (determined
by exhaustive search) averaged over several different
application domains and design spaces.

• Our dynamic optimization methodology combines the
initial tunable value selection with an intelligent
exploration ordering of tunable parameter values and
an exploration arrangement of tunable parameters, since
some parameters are more critical for an application
than others and thus should be explored first [5] (e.g.
transmission power parameter may be more critical for a
lifetime sensitive application than processor voltage).

• Although greedy-based algorithms and approaches are
not novel in general, we propose, for the first time,
an online greedy algorithm that leverages intelligent
parameter arrangement and explores the design space to
improve over the one-shot solution to find the optimal
(or near optimal) operating state. Results reveal that our
greedy exploration of tunable parameters results in an
operating state within 2.5% of the optimal operating state
while exploring only 0.04% of the design space.

II. DYNAMIC OPTIMIZATION METHODOLOGY

Fig. 1 depicts our dynamic optimization methodology for
WSNs. WSN designers evaluate application requirements and
capture these requirements as high-level application metrics
(e.g. lifetime, throughput, reliability) and associated weight
factors. The weight factors characterize application metrics’
relative importance, e.g., since some WSN applications may
not be power-centric and throughput may be more important
than the lifetime, assigning a higher weight factor for
throughput than lifetime can capture this relationship. The
sensor nodes use application metrics and weight factors to

Fig. 1. Our dynamic optimization methodology for wireless sensor networks.

determine an appropriate operating state (tunable parameter
settings) using an application metric estimation model.
This model determines high-level application metric values
corresponding to the tunable parameter settings. This model
details are left for future work.

Fig. 1 shows the per-node dynamic optimization process
(encompassed by the dashed circle), which is orchestrated
by the dynamic optimization controller. The process consists
of two operating modes: theone-shot modewherein the
sensor node operating state is directly determined and the
improvement modewherein the operating state is iteratively
improved using an online optimization algorithm. The
dynamic optimization process consists of three steps. In the
first step, the dynamic optimization controller intelligently
determines the initial parameter value settings (operating state)
and exploration order (ascending or descending), which is
critical in reducing the number of states explored by the
improvement mode. In the one-shot operation mode, the
dynamic optimization process is complete and the sensor
node moves directly to the operating state specified by the
initial parameter value settings. In the improvement mode,
the second step determines the parameter arrangement based
on application metric weight factors (e.g. explore processor
voltage then frequency then sensing frequency). The third
step invokes anonline optimization algorithmfor parameter
exploration to iteratively improve the operating state to more
closely meet application requirements. The online optimization
algorithm leverages the intelligent initial parameter value
settings, exploration order, and parameter arrangement. A
dynamic profiler records profiling statistics (e.g. processor
voltage, wireless channel condition, radio transmission power)
given the current operating state and environmental stimuli and
passes these profiling statistics to the dynamic optimization
controller.

The dynamic optimization controller processes the profiling
statistics to determine whether the current operating state
meets the application requirements. If the application
requirements are not met, the dynamic optimization controller



reinvokes the dynamic optimization process to determine the
new operating state. This feedback process continues to ensure
that the application requirements are best met under changing
environmental stimuli. Details of this process are left forfuture
work.

III. D YNAMIC OPTIMIZATION FORMULATION

In this section, we formulate the state space and the
objective function for our dynamic optimization.

A. State Space

The state spaceS for our dynamic optimization
methodology givenN tunable parameters is defined as:

S = P1 × P2 × · · · × PN (1)

wherePi denotes the state space for tunable parameteri, ∀ i ∈
{1, 2, . . . , N} and × denotes the Cartesian product. Each
tunable parameterPi consists ofn values:

Pi = {pi1 , pi2 , pi3 , . . . , pin
} : |Pi| = n (2)

where |Pi| denotes the tunable parameterPi state space
cardinality (the number of tunable values inPi). S is a set of
n-tuples formed by taking one tunable parameter value from
each tunable parameter. A single n-tuples ∈ S is given as:

s = (p1y
, p2y

, . . . , pNy
) : piy

∈ Pi,

∀ i ∈ {1, 2, . . . , N}, y ∈ {1, 2, . . . , n} (3)

Each n-tuple represents a sensor note operating state. We point
out that some n-tuples inS may not be feasible (such as invalid
combinations of processor voltage and frequency) and can be
regarded asdo not caretuples.

B. Optimization Objection Function

The dynamic optimization problem can be formulated as:

max f(s) =

m∑

k=1

ωkfk(s)

s.t. s ∈ S

ωk ≥ 0, k = 1, 2, . . . , m.

ωk ≤ 1, k = 1, 2, . . . , m.
m∑

k=1

ωk = 1, (4)

where f(s) denotes the objective function which captures
application metrics and weight factors.fk(s) and ωk in
(4) denote the objective function and weight factor for the
kth application metric, respectively, given that there arem

application metrics.
For our dynamic optimization methodology, we consider

three application metrics (m = 3), lifetime, throughput, and
reliability, whose objective functions are denoted byfl(s),

Fig. 2. Reliability objective functionfr(s).

ft(s), andfr(s), respectively. We definefr(s) (Fig. 2) using
the piecewise linear function:

fr(s) =





1, sr ≥ βr

CUr
+

(Cβr−CUr )(sr−Ur)
(βr−Ur) , Ur ≤ sr < βr

CLr
+

(CUr−CLr )(sr−Lr)
(Ur−Lr) , Lr ≤ sr < Ur

CLr
· (sr−αr)

(Lr−αr) , αr ≤ sr < Lr

0, sr < αr.
(5)

wheresr denotes the reliability offered by states, the constant
parametersLr and Ur denote thedesired minimum and
maximum reliability, and the constant parametersαr and βr

denote theacceptableminimum and maximum reliability. The
piecewise linear objective function provides WSN designers
with a flexible application requirement specification, as it
allows both desirable and acceptable ranges. The objective
function reward gradient (slope) would be greater in the
desired range than the acceptable range, however, there would
be no reward for operating outside the acceptable range. The
constant parametersCLr

, CUr
, andCβr

in (5) denote thefr(s)
value atLr, Ur, andβr, respectively.

The fl(s) and ft(s) can be defined using increasing
piecewise linear functions similar to (5) as higher values of
lifetime and throughput (like reliability) are typically desirable
and correspond to higher objective function values. Although
we define our objective functions using piecewise linear
objective functions, our dynamic optimization methodology
works well for any other characterization of objective
functions (e.g., linear, non-linear).

IV. A LGORITHMS FORDYNAMIC OPTIMIZATION

METHODOLOGY

In this section, we describe the three steps, associated
algorithms, and operating modes for our dynamic optimization
methodology (Section 1). Step one determines initial tunable
parameter values and exploration order (ascending or
descending). Inone-shot mode(Fig. 1), these initial tunable
parameter value settings result in a high-quality operating
state in one-shot (no additional design space exploration)for
applications with tight constraints (e.g. limited exploration
time due to a rapidly changing environment). For applications
with more flexible constraints, theimprovement mode
encompasses steps two and three and iteratively improves the
one-shot solution. Step two determines the tunable parameter
exploration arrangement based on the application metric
weight factors (i.e. some parameters are more critical for an
application than others and should be explored first). Step three



leverages the outcomes of steps one and two and explores
the design space using an online optimization algorithm. For
this optimization algorithm, we propose a lightweight greedy
algorithm for design space exploration, however, step three
can be generalized to any online algorithm.

A. Initial Parameter Value Settings and Exploration Order

Input : f(s), N, n, m,P
Output : Initial tunable parameter value settings and exploration

order
for k ← 1 to m do1

for Pi ← P1 to PN do2
fk

pi1
← k-metric objective function value when parameter3

setting is {Pi = pi1 , Pj = Pj0 ,∀ i 6= j} ;
fk

pin
← k-metric objective function value when parameter4

setting is {Pi = pin , Pj = Pj0 ,∀ i 6= j} ;
δfk

Pi
← fk

pin
− fk

pi1
;5

if δfk
Pi

> 0 then6
explore Pi in descending order ;7
P k

d
[i]← descending ;8

P k
0
[i]← pk

in
;9

else10
explore Pi in ascending order ;11
P k

d
[i]← ascending ;12

P k
0
[i]← pk

i1
;13

end14
end15

end16

return P k

d
, P k

0
, ∀ k ∈ {1, . . . , m}

Algorithm 1 : Initial tunable parameter value settings and
exploration order algorithm.

Algorithm 1 describes our technique to determine initial
tunable parameter value settings and exploration order (first
step of our dynamic optimization methodology). The algorithm
takes as input the objective functionf(s), the number of
tunable parametersN , the number of values for each tunable
parametern, the number of application metricsm, and P

whereP represents a vector containing the tunable parameters,
P = {P1, P2, . . . , PN}. For each application metrick, the
algorithm calculates vectorsP k

0
andP k

d
(whered denotes the

exploration direction (ascending or descending)), which store
the initial value settings and exploration order, respectively,
for the tunable parameters. The algorithm determines thekth

application metric objective function valuesfk
pi1

and fk
pin

where the parameter being exploredPi is assigned its first
pi1 and lastpin

tunable values, respectively, and rest of the
tunable parametersPj , ∀ j 6= i are assigned initial values (lines
3 - 4). δfk

Pi
stores the difference betweenfk

pin
and fk

pi1
. For

δfk
Pi

> 0, pin
results in a greater objective function value as

compared topi1 for parameterPi (i.e. the objective function
value decreases as the parameter value decreases). Therefore,
to reduce the number of states explored while considering
that the greedy algorithm (Section IV-C) will stop exploring
a tunable parameter if a tunable parameter’s value yields a
comparatively lower objective function value,Pi’s exploration
order must be descending (lines 6 - 8). The algorithm assigns
pin

as the initial value ofPi for thekth application metric (line
9). If δfk

Pi
< 0, the algorithm assigns the exploration order

as ascending forPi andpi1 as the initial value setting ofPi

(lines 11 - 13). Thisδfk
Pi

calculation procedure is repeated for
all m application metrics and allN tunable parameters (lines
1 - 16).

B. Parameter Arrangement

Depending on the application metric weight factors,
some parameters are more critical to meeting application
requirements than other parameters. For example, sensing
frequency is a critical parameter for applications with a high
responsiveness weight factor and therefore, sensing frequency
should be explored first. In this subsection, we devise a
technique for parameter arrangement such that parameters
are explored in an order characterized by the parameter’s
impact on application metrics based on relative weight factors.
Our parameter arrangement technique is based on calculations
performed in Algorithm 1. We define:

∇fP = {∇f1
P ,∇f2

P , . . . ,∇fm
P } (6)

where∇fP is a vector containing∇fk
P , ∀ k ∈ {1, 2, . . . , m}

arranged in descending order by their respective values andis
given as:

∇fk

P
= {δfk

P1
, δfk

P2
, . . . , δfk

PN
}

: |δfk
Pi
| ≥ |δfk

Pi+1
|, ∀ i ∈ {1, 2, . . . , N − 1} (7)

The tunable parameter arrangement vectorP k corresponding
to ∇fk

P
(one-to-one correspondence) is given by:

P k = {P k
1 , P k

2 , . . . , P k
N}, ∀ k ∈ {1, 2, . . . , m} (8)

An intelligent parameter arrangement̂P must consider all
application metrics’ weight factors with higher importance
given to higher weight factors, i.e.:

P̂ = {P 1
1 , . . . , P 1

l1
, P 2

1 , . . . , P 2
l2

,

P 3
1 , . . . , P 3

l3
, . . . , Pm

1 , . . . , Pm
lm
} (9)

where lk denotes the number of tunable parameters taken
from P k, ∀ k ∈ {1, 2, . . . , m} such that

∑m

k=1 lk = N .
Our technique allows taking more tunable parameters from
parameter arrangement vectors corresponding to higher weight
factor application metrics, i.e.lk ≥ lk+1, ∀ k ∈ {1, 2, . . . , m−
1}. In (9), l1 tunable parameters are taken from vector
P 1, then l2 from vector P 2, and so on to lm from
vector Pm such that{P k

1 , . . . , P k
lk
} ∩ {P k−1

1 , . . . , P k−1
lk−1

} =
∅, ∀ k ∈ {2, 3, . . . , m}. In other words, we select those tunable
parameters from parameter arrangement vectors corresponding
to lower weight factors which are not already selected from
parameter arrangement vectors corresponding to higher weight
factors (i.e. P̂ comprises of disjoint or non-overlapping
tunable parameters corresponding to each application metric).

In the situation where weight factorω1 is much greater than
all other weight factors, an intelligent parameter arrangement
P̃ would correspond to the parameter arrangement for the
application metric with weight factorω1, i.e.:

P̃ = P 1 = {P 1
1 , P 1

2 , . . . , P 1
N}

⇔ ω1 � ωq, ∀ q ∈ {2, 3, . . . , m} (10)



The initial parameter value vector̂P0 and exploration order
(ascending or descending) vectorP̂d corresponding toP̂ (9)
can be determined from̂P (9), P k

d
, andP k

0
, ∀ k ∈ {1, . . . , m}

(Algorithm 1) by looking at the tunable parameter from̂P
and finding the tunable parameter’s initial value fromP k

0
and

exploration order fromP k

d
.

C. Online Optimization Algorithm

Input : f(s), N, n,P , P̂0, P̂d

Output : Sensor node state that maximizes f(s) and the
corresponding f(s) value

κ← initial tunable parameter value settings from P̂0 ;1
fbest ← solution from initial parameter settings κ ;2

for P̂i ← P̂1 to P̂N do3

explore P̂i in ascending/descending order suggested by P̂d ;4

foreach P̂i = {p̂i1 , p̂i2 , . . . , p̂in} do5
ftemp ← current state ζ solution ;6
if ftemp > fbest then7

fbest ← ftemp ;8
ξ ← ζ ;9

else10
break ;11

end12
end13

end14

return ξ, fbest

Algorithm 2 : Online optimization algorithm for tunable
parameters exploration.

The third step of our dynamic optimization process
uses a greedy lightweight online optimization algorithm for
tunable parameters exploration in an effort to determine a
better operating state than the one obtained from step one
(Section IV-A). Algorithm 2 depicts our online optimization
algorithm, which leverages the initial parameter value
settings (Section IV-A), parameter value exploration order
(Section IV-A), and parameter arrangement (Section IV-B).
The algorithm takes as input the objective functionf(s), the
number of tunable parametersN , the number of values for
each tunable parametern, the tunable parameters’ vectorP ,
the tunable parameters’ initial value vectorP̂0, and the tunable
parameter’s exploration order (ascending or descending) vector
P̂d. The algorithm initializes stateκ from P̂0 (line 1) and
fbest with κ’s objective function value (line 2). The algorithm
explores each parameter in̂Pi (9) in ascending or descending
order as given bŷPd (lines 3 - 4). For each tunable parameter
P̂i (line 5), the algorithm assignsftemp the objective function
value from the current stateζ (line 6). If ftemp > fbest

(increase in objection function value),ftemp is assigned to
fbest and the stateζ is assigned to stateξ (lines 7 - 9). If
ftemp ≤ fbest, the algorithm stops exploring the current
parameterP̂i and starts exploring the next tunable parameter
(lines 10 - 12). The algorithm returns the best found objective
function valuefbest and the stateξ corresponding tofbest.

D. Computational Complexity

The computational complexity (running time and storage)
for our dynamic optimization methodology isO(Nm log N +
Nn), which is comprised of the intelligent initial parameter
value settings and exploration ordering (Algorithm 1)O(Nm),

parameter arrangementO(Nm log N) (sorting ∇fk
P (7)

contributes theN log N factor) (Section IV-B), and the
online optimization algorithm for parameter exploration
(Algorithm 2) O(Nn). Assuming that the number of tunable
parametersN is larger than the number of parameter’s tunable
valuesn, the computational complexity of our methodology
can be given asO(Nm log N). This complexity reveals that
our proposed methodology is lightweight and is thus feasible
for implementation on sensor nodes with tight resource
constraints.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experimental setup is based on the Crossbow IRIS mote
platform [13] with a battery capacity of 2000 mA-h using two
AA alkaline batteries. The IRIS mote platform integrates an
Atmel ATmega1281 microcontroller [14], an MTS400 sensor
board [15] with Sensirion SHT1x temperature and humidity
sensors [16], and an Atmel AT-86RF230 low power 2.4 GHz
transceiver [17].

We analyze six tunable parameters: processor voltageVp,
processor frequencyFp, sensing frequencyFs, packet sizePs,
packet transmission intervalPti, and transceiver transmission
powerPtx. In order to explore the fidelity of our methodology
across small and large design spaces, we consider two design
space cardinalities (number of states in the design space)|S| =
729 and |S| = 31, 104. The tunable parameters for|S| = 729
areVp = {2.7, 3.3, 4} (volts),Fp = {4, 6, 8} (MHz) [14], Fs =
{1, 2, 3} (samples per second) [16],Ps = {41, 56, 64} (bytes),
Pti = {60, 300, 600} (seconds), andPtx = {-17, -3, 1} (dBm)
[17]. The tunable parameters for|S| = 31, 104 areVp = {1.8,
2.7, 3.3, 4, 4.5, 5} (volts), Fp = {2, 4, 6, 8, 12, 16} (MHz)
[14], Fs = {0.2, 0.5, 1, 2, 3, 4} (samples per second) [16],
Ps = {32, 41, 56, 64, 100, 127} (bytes),Pti = {10, 30, 60,
300, 600, 1200} (seconds), andPtx = {-17, -3, 1, 3} (dBm)
[17]. All state space tuples are feasible for|S| = 729, whereas
|S| = 31, 104 contains 7,779 infeasible state space tuples (e.g.
all Vp andFp pairs are not feasible).

In order to evaluate the robustness of our methodology
across different applications with varying application metric
weight factors, we model three sample application domains
(a security/defense system, a health care application, and
an ambient conditions monitoring application) and assign
application specific values for the desirable minimum
L, desirable maximumU , acceptable minimumα, and
acceptable maximumβ objective function parameter values
for application metrics (Section III-B). Our selected objective
function parameter values and application metric weight
factors represent typical application requirements [18].
Although, we analyzed our methodology for the IRIS motes
platform, three application domains, and two design spaces,
our algorithms are equally applicable to any platform,
application domain, and design space.

B. Results

For comparison purposes, we implemented a simulated
annealing (SA)-based algorithm, our greedy online



TABLE I
GREEDY ALGORITHMS WITH DIFFERENT PARAMETER ARRANGEMENTS AND EXPLORATION ORDERS

Notation Description

GD Our greedy algorithm with parameter exploration orderP̂d and arrangement̂P

GDascA Explores parameter values in ascending order with arrangementA = {Vp, Fp, Fs, Ps, Pti, Ptx}

GDascB Explores parameter values in ascending order with arrangement B = {Ptx, Pti, Ps, Fs, Fp, Vp}

GDascC Explores parameter values in ascending order with arrangement C = {Fs, Pti, Ptx, Vp, Fp, Ps}

GDdesD Explores parameter values in descending order with arrangementD = {Vp, Fp, Fs, Ps, Pti, Ptx}

GDdesE Explores parameter values in descending order with arrangementE = {Ptx, Pti, Ps, Fs, Fp, Vp}

GDdesF Explores parameter values in descending order with arrangementF = {Ps, Fp, Vp, Ptx, Pti, Fs}
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Fig. 3. Objective function value normalized to the optimal solution for a
varying number of states explored for SA and the greedy algorithms for a
security/defense system whereωl = 0.25, ωt = 0.35, ωr = 0.4, |S| = 729.

optimization algorithm (GD) (which leverages intelligent
initial parameter value selection, exploration ordering,
and parameter arrangement), and several other greedy online
algorithm variations (Table I) in C/C++. First, we evaluateour
methodology and algorithms with a desktop implementation
to reduce the analysis time and study the feasibility of our
algorithms for a dynamic environment. We compared our
results with SA to provide relative comparisons of greedy
algorithms with another heuristic algorithm. We compared
GD results with different greedy algorithm variations (Table I)
to provide an insight into how initial parameter value settings,
exploration ordering, and parameter arrangement affect the
final operating state quality. We normalized the objective
function value (corresponding to the operating state) attained
by the algorithms with respect to the optimal solution
obtained using an exhaustive search. We analyzed the relative
complexity of the algorithms by measuring the execution
time and data memory requirements. Note that for brevity,
our presented results are a subset of the greedy algorithms
listed in (Table I), the application domains, and the design
spaces. However, we evaluated all the greedy algorithms and
application domains and the subset presented in this section
is representative of all greedy algorithms and application
domain trends and characteristics.

Fig. 3 shows the objective function value normalized to
the optimal solution versus number of states explored for a
security/defense system for|S| = 729. GDascA, GDdesD, and
GD converge to a steady state solution after exploring 11,
10, and 8 states, respectively. These convergence results show
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Fig. 4. Objective function value normalized to the optimal solution for a
varying number of states explored for SA and greedy algorithms for a health
care application whereωl = 0.25, ωt = 0.35, ωr = 0.4, |S| = 729.

that GD converged to the optimal solution slightly faster than
other greedy algorithms, exploring only 1.1% of the design
space. The order in which greedy algorithms explore tunable
parameters (e.g.Vp, thenFp, and so on, etc.) affect the number
of iterations for convergence similarly to how the order of
variables in a binary decision diagram (BDD) impacts the
size of the tree and processing speed [19]. GDascA converges
to a better solution than GDdesD showing that ascending
parameter values exploration is better for a security/defense
system with the given weight factors. In addition, the SA
algorithm outperforms all greedy algorithms and convergesto
the optimal solution for|S| = 729 after exploring 400 states
(54.9% of the design space). Fig. 3 also verifies the ability of
our methodology to determine a good quality (near-optimal)
solution in one-shot, as GD achieves only a 1.83% percentage
improvement over the initial state after exploring 8 states.

Fig. 4 shows the objective function value normalized to the
optimal solution versus number of states explored for a health
care application for|S| = 729. Fig. 4 shows similar trends as
seen in Fig. 3 for convergence rates on all algorithms, GD’s
one-shot solution quality, and GDascB’s superior solution as
compared to GDdesE.

Fig. 5 shows the objective function value normalized to
the optimal solution versus number of states explored for an
ambient conditions monitoring application for|S| = 31, 104.
GD converges to the optimal solution after exploring 13 states
(0.04% of design space), with a 16.69% improvement over
the one-shot solution. GDascC and GDdesF converge to the
solution after exploring 9 and 7 states, respectively. These



TABLE II
PERCENTAGE IMPROVEMENT ATTAINED BYGD AFTER ONE STATE EXPLORATION WHEN|S| = 729.

Application Domain GDascA GDascB GDascC GDdesD GDdesE GDdesF

Security/Defense System 155.06% 155.06% 155.06% 439.56% 22.9% 9.2%

Health Care 78% 78% 78% 211.78% 14.1% 6.64%

Ambient Conditions Monitoring 51.81% 51.81% 51.81% 142.89% 39.85% 6.09%

TABLE III
PERCENTAGE IMPROVEMENT ATTAINED BYGD AFTER ONE STATE EXPLORATION WHEN|S| = 31, 104.

Application Domain GDascA GDascB GDascC GDdesD GDdesE GDdesF

Security/Defense System 147.97% 147.97% 147.97% 435.09% 13.66% 0.33%

Health Care 73.42% 73.42% 73.42% 218.77% 11.47% 0.3%

Ambient Conditions Monitoring 0% 0% 0% 146.97% -8.24% 75.61%

1 2 4 6 8 10 12 14 50 100 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of States Explored

N
or

m
al

iz
ed

 O
bj

ec
tiv

e 
F

un
ct

io
n

 

 

SA

GDascC

GDdesF

GD

Fig. 5. Objective function value normalized to the optimal solution for
a varying number of states explored for SA and greedy algorithms for an
ambient conditions monitoring application whereωl = 0.6, ωt = 0.25,
ωr = 0.15, |S| = 31, 104.

convergence and percentage improvement results show that
GD may explore more states than other greedy algorithms if
state exploration provides a noticeable improvement over the
one-shot solution. The figure also shows that SA converges
to a near-optimal solution after exploring 400 states (1.29%
of design space). These convergence results show that even
though the design space cardinality increases by 43x, both
heuristic algorithms (greedy and SA) still explore only a
small percentage of the design space and result in high-quality
solutions.

In order to prove the effectiveness of our intelligent
initial parameter value selection technique (Section IV-A),
we calculated the percentage improvements in the normalized
objective function value obtained by the intelligent initial
parameter value settings over other arbitrary initial value
settings used in other greedy algorithms for|S| = 729
(Table II) and |S| = 31, 104 (Table III). Results reveal
that our one-shot operating state using only intelligent initial
parameter settings is within 5.92% of the optimal averaged
over several different application domains and design spaces.
Table II and Table III verify that our intelligent initial
parameter settings technique (which gives a near-optimal
solution) provides substantial percentage improvements over
other arbitrary initial settings for different application domains

and design space cardinalities. We point out that some
arbitrary initial parameter settings may attain a slightlyhigher
normalized objective function value for a particular application
and design space cardinality (e.g. initial parameter settings for
GDdesE for ambient conditions monitoring application when
|S| = 31, 104), but in general, the arbitrary selection would
not scale to other applications and design space cardinalities.

We performed data memory analysis for each step of
our dynamic optimization methodology (Section 1). Step
one (one-shot solution) requires only 150, 188, 248, and
416 bytes whereas step two requires 94, 140, 200, and
494 bytes for (number of tunable parametersN , number
of application metricsm) equal to (3, 2), (3, 3), (6, 3),
and (6, 6), respectively. For step three, we compared data
memory requirements for GD with SA for different design
space cardinalities. We observed that GD requires 458, 528,
574, 870, and 886 bytes, whereas SA requires 514, 582, 624,
920, and 936 bytes of storage for design space cardinalities
of 8, 81, 729, 31104, 46656, respectively. The data memory
analysis shows that SA has comparatively larger memory
requirements than the greedy algorithm. Our analysis reveals
that the data memory requirements for all three steps of our
dynamic optimization methodology increases linearly as the
number of tunable parameters, tunable values, and application
metrics (and thus the design space) increases. Furthermore,
the data memory analysis verifies that although our dynamic
optimization methodology (all three steps) has low data
memory requirements, the one-shot solution (from step one)
requires 361.36% less memory on average.

We measured the execution time for all three steps of
our dynamic optimization methodology averaged over 10,000
runs (to smooth any discrepancies in execution time due to
operating system overheads) on an Intel Xeon CPU running
at 2.66 GHz [20] using the Linux/Unixtime command [21].
We scaled these execution times to the Atmel ATmega1281
microcontroller [14] running at 8 MHz. Even though scaling
does not provide 100% accuracy for the microcontroller
runtime because of different instruction set architectures,
scaling provides reasonable runtime estimates and enables
relative comparisons. Results showed that step one and step
two required 1.66 ms and 0.332 ms, respectively, both for



|S| = 729 and |S| = 31, 104. For step three, we compared
GD with SA. GD explored 10 states and required 0.887
ms and 1.33 ms on average to converge to the solution
for |S| = 729 and |S| = 31, 104, respectively. SA took
2.76 ms and 2.88 ms to explore the first 10 states (to
provide a fair comparison with GD) for|S| = 729 and
|S| = 31, 104, respectively. The other greedy algorithms
required comparatively more time than GD because they
required more states exploration to converge than GD, but
however, all greedy algorithms required less execution time
than SA. To verify that our dynamic optimization methodology
is lightweight, we compared the execution time results for our
dynamic optimization methodology (including all three steps)
with the exhaustive search. The exhaustive search required
29.526 ms and 2.765 seconds for|S| = 729 and |S| =
31, 104, respectively. Compared with the exhaustive search,
our dynamic optimization methodology required 10.26x and
832.33x less execution time for|S| = 729 and |S| = 31, 104,
respectively. The execution time analysis reveals that our
dynamic optimization methodology (including all three steps)
requires execution time on the order of milliseconds, and
the one-shot solution requires 138.32% less execution time
on average as compared to all three steps of the dynamic
optimization methodology. Execution time savings attained
by the one-shot solution as compared to the three steps
of our dynamic optimization methodology are 73.43% and
186.26% for GD and SA, respectively, when|S| = 729,
and are 100.12% and 138.32% for GD and SA, respectively,
when |S| = 31, 104. These results indicate that the design
space cardinality affects the execution time linearly and our
dynamic optimization methodology’s advantage increases as
design space cardinality increases.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a dynamic optimization
methodology for WSNs, which provided a high-quality
solution in just one-shot using an intelligent initial tunable
parameter value settings for highly constrained applications.
Additionally, we proposed an online greedy optimization
algorithm that leveraged intelligent design space exploration
techniques to iteratively improve on the one-shot solution
for less constrained applications. Compared with SA and
different greedy algorithm variations, results showed that one-
shot technique yielded improvements as high as 439.56%
over other arbitrary initial parameter settings. Results indicated
that our greedy algorithm converged to the optimal (or near-
optimal) solution after exploring only 1.1% and 0.04% of the
design space whereas SA explored 54.9% and 1.29% of the
design space for|S| = 729 and |S| = 31, 104, respectively.
Data memory and execution time analysis revealed that our
one-shot solution (step one) required 361.36% and 138.32%
less data memory and execution time, respectively, when
compared to using all the three steps of our dynamic
optimization methodology. Results revealed that our dynamic
optimization methodology (including all three steps) required
10.26x and 832.33x less execution time as compared to

the exhaustive search for|S| = 729 and |S| = 31, 104,
respectively. Computational complexity analysis confirmed
that our methodology is lightweight and thus feasible for
sensor nodes with limited resources.

Future work includes the incorporation of profiling statistics
into our dynamic optimization methodology to provide
feedback with respect to changing environmental stimuli. In
addition, we plan to further verify our dynamic optimization
methodology by implementation on a hardware sensor node
platform.
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