
Citation: Shafique, M.A.; Munir, A.;

Kong, J. Deep Learning Performance

Characterization on GPUs for

Various Quantization Frameworks.

AI 2023, 4, 926–948. https://doi.org/

10.3390/ai4040047

Academic Editors: Gianni D’Angelo

and Walter Richardson

Received: 26 August 2023

Revised: 27 September 2023

Accepted: 11 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Deep Learning Performance Characterization on GPUs for
Various Quantization Frameworks
Muhammad Ali Shafique 1, Arslan Munir 2,* and Joonho Kong 3

1 Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA;
alishafique@ksu.edu

2 Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA
3 School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;

joonho.kong@knu.ac.kr
* Correspondence: amunir@ksu.edu

Abstract: Deep learning is employed in many applications, such as computer vision, natural language
processing, robotics, and recommender systems. Large and complex neural networks lead to high
accuracy; however, they adversely affect many aspects of deep learning performance, such as training
time, latency, throughput, energy consumption, and memory usage in the training and inference
stages. To solve these challenges, various optimization techniques and frameworks have been
developed for the efficient performance of deep learning models in the training and inference stages.
Although optimization techniques such as quantization have been studied thoroughly in the past, less
work has been done to study the performance of frameworks that provide quantization techniques.
In this paper, we have used different performance metrics to study the performance of various
quantization frameworks, including TensorFlow automatic mixed precision and TensorRT. These
performance metrics include training time and memory utilization in the training stage along with
latency and throughput for graphics processing units (GPUs) in the inference stage. We have applied
the automatic mixed precision (AMP) technique during the training stage using the TensorFlow
framework, while for inference we have utilized the TensorRT framework for the post-training
quantization technique using the TensorFlow TensorRT (TF-TRT) application programming interface
(API). We performed model profiling for different deep learning models, datasets, image sizes, and
batch sizes for both the training and inference stages, the results of which can help developers and
researchers to devise and deploy efficient deep learning models for GPUs.

Keywords: optimization; deep learning; quantization; performance; TensorRT; automatic mixed precision

1. Introduction

Deep learning-based artificial intelligence has gained tremendous attention in recent
years. Deep learning models are being used in a wide range of applications [1–3], such as
computer vision [4,5], machine translation [6], natural language processing [7], and recom-
mender systems [8]. In addition, deep learning techniques have achieved great success in
real-time applications such as self-driving cars [9,10], unmanned aerial vehicles (UAVs) [11],
and autonomous robots [12–14]. In all of these applications, the primary goal is to achieve
high accuracy, which can be generally achieved using large and complex models. While
such large and complex deep neural networks (DNNs) ensure high accuracy, they entail
problems and challenges as well, such as long training times, high inference latency, low
throughput, high energy consumption, and large memory usage. These challenges can be
addressed using various optimization frameworks for obtaining the desired performance
levels of deep learning models during the training and inference stages. In this paper, we
study the performance of quantization frameworks such as AMP and TensorRT, which
are low-precision formats, and characterize the behavior of classification models used to

AI 2023, 4, 926–948. https://doi.org/10.3390/ai4040047 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai4040047
https://doi.org/10.3390/ai4040047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-3126-8945
https://orcid.org/0000-0002-9013-9561
https://doi.org/10.3390/ai4040047
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai4040047?type=check_update&version=1

AI 2023, 4 927

address these challenges. Several of the challenges and problems of large and complex
deep learning models are discussed in detail below.

1.1. First Problem: Training Time

For large DNNs, the first challenge is their high training time. The training time of
recent DNN models can be extended by up to several weeks, which greatly slows the
DNN model development and deployment process. For example, [15] showed that ResNet-
101, which is less than 1% more accurate than ResNet-50, takes one week to train on four
Maxwell M40 GPUs. Similarly, while ResNet-152 is 0.05% more accurate than ResNet-101, it
takes 3.5 additional days of training time compared to ResNet-101. When a deep learning
model takes a long time to train, there can be implications such as continuous usage of
resources, power consumption, a slow development process, and challenges in scalability
and maintenance. In addition, it greatly impacts the progress of new DNN designs and
slows down the fine-tuning, evaluation, testing, and deployment processes of DNNs.

1.2. Second Problem: Inference Latency/Throughput for Real-Time Applications

Many real-time applications, such as advanced driver assistance systems (ADAS) and
autonomous driving, utilize DNNs to perform tasks such as detection of obstacles [16–18]
and pedestrians [19]. Along with the accuracy of deep learning models, latency and through-
put become prominent factors in such safety-critical applications. A recent study [20] using
the ImageNet dataset showed that the number of model layers in ResNet-152 (2015) has
grown by 19× compared to Alexnet (2012). This has increased the giga-floating point oper-
ations (GFLOPs) of the model significantly while reducing the error rate by 12.5%. These
large models lead to more memory references, resulting in high latency and low throughput.
The increase in latency and decrease in throughput limits the attainable performance of
real-time deep learning applications such as self-driving cars and autonomous robots.

1.3. Third Problem: Large Memory Usage

Large memory usage is another common challenge when working with large and
complex deep learning models. Modern DNNs can contain millions or even billions
of parameters. As models become more complex, their memory requirements increase
significantly. For instance, GPT-3 [21] consists of hundreds of billions of parameters, leading
to massive memory requirements. This issue affects both the training and inference stages
of deep learning. The effects of these large models on memory requirements during training
process are even worse than in the inference stage, as the activation values need to be stored
during the training stage to allow for backpropagation. As the model becomes larger and
more complex, the number of layers and activation values increases significantly, resulting
in large memory requirements. During the deployment stage, large models affect inference
performance in resource-constrained environments. This is because such models require
significant memory capacity in order to efficiently process inputs and weights.

Various optimization techniques have been used to address these challenges, in-
cluding weight pruning [22–25], weight clustering [26], and gradient accumulation and
quantization [27–30]. Deep compression methods are developed using combinations of
optimization techniques such as pruning, clustering, and quantization in order to reduce
the maximum degree of redundancy in the model [31]. In addition to these deep learning
optimization techniques, optimization frameworks can be used to enhance the performance
of deep learning models [32]. For instance, TensorRT is a popular optimization framework
that is used to optimize DNNs for more efficient inference.

Deep learning optimization techniques such as quantization and pruning have been
studied and used thoroughly in the past; however, few works have studied the performance
of the frameworks that provide these quantization techniques. The objective of the present
study is to characterize the behavior of different models when using TensorFlow AMP for
the training stage and Nvidia TensorRT quantization techniques for the inference stage.
Memory utilization and training time are profiled during the training stage, while latency

AI 2023, 4 928

and throughput are measured for the inference stage. Furthermore, model accuracy is
quantified to assess the effect of TensorFlow AMP on TensorRT post-training quantization.
We then analyze the quantization techniques with regard to the various deep learning
performance metrics. Our main contributions are as follows:

• We study the performance of various quantization frameworks, such as the AMP
and TensorRT low-precision formats, to address challenges of deep learning mod-
els such as training time, inference latency, and memory usage. We demonstrate
the performance of these quantization frameworks through different deep learning
classification models.

• We benchmark the training time and memory utilization with and without the AMP
technique for various models during the training stage.

• We benchmark the latency and throughput with different precision modes of TensorRT
post-training quantization during the inference stage.

• We profile deep learning performance across various deep learning models using vari-
ous metrics, including accuracy, memory usage, training time, latency, and throughput,
by varying the image sizes, batch sizes, and datasets.

• We quantify and analyze the accuracy of different deep learning models for different
quantization precision modes, such as FP32, FP16, and INT8, with and without the
AMP technique.

This remainder of this article is organized in the following manner. Section 2 provides
a comprehensive review of previous works and studies related to quantization techniques,
highlighting the key advancements and findings in the field. In Section 3, the concepts
of quantization are explained in the context of deep learning, covering the fundamental
principles and techniques. Section 4 describes the framework that utilizes quantization
techniques for efficient inference. The methodology employed in this paper is presented
in Section 5, which includes a detailed description of the datasets, models, hardware,
and metrics used for experimentation. Section 6 presents the results obtained from our
experiments and analyzes the impact of quantization techniques on various models across
different batch sizes. Lastly, Section 7 concludes the paper by summarizing our key
findings and provides suggestions for future exploration in the field of quantization for
deep learning.

2. Related Work

Continuous pursuit of high accuracy has led researchers to develop very large and
complex neural network architectures such as deep convolutional neural networks (CNNs).
However, using these large CNNs is not suitable for mobile or embedded platforms
such as smartphones, augmented reality (AR)/virtual reality (VR) devices, and drones.
These mobile and/or embedded platforms require smaller models that are a better fit
for their limited memory and computational resources. As a result, there is a growing
field of research dedicated to reducing model size and inference time while maintaining
high accuracy. One way to do this involves reducing the precision of the weights and
activations of the models by converting them from higher-bit to lower-bit representations.
This approach has led to new lightweight network architectures such as Binary Neural
Networks (BNN [33]) and Ternary Weight Networks (TWN [34]).

Quantization techniques have demonstrated remarkable performance improvements
in training and inference of DNN models [35–39]. Similarly, the advancements in half-
precision and mixed-precision training [40,41] have played an important role in efficient
DNN execution. By enabling low-precision computation with efficient dataflow in hard-
ware accelerators, quantization leads to much better latency and throughput in deep
learning inferences.

Quantization reduces the computational and memory requirements of DNNs, making
them suitable for deployment on resource-constrained edge devices. This enables edge
AI [42], reduces power consumption and latency, improves real-time processing, and ad-
dresses memory constraints in edge devices. In one study by Ravi et al. [43], a lightweight

AI 2023, 4 929

vision transformer model was deployed on a Xilinx PYNQ Z1 field-programmable gate
array (FPGA) board by applying quantization. The work in [44] utilized quantization
with federated learning to improve the efficiency of data exchange between cloud nodes
and edge servers. The TensorRT optimization framework [45] has been used to easily
accelerate and deploy various deep learning applications on edge devices. This framework
is comprised of many optimization techniques, including the quantization technique. It
was used by Wang et al. [46] to accelerate the YOLOv4 architecture on a Jetson Nano for the
application of detecting of dirty eggs. In another study by Chunxiang et al. [47], the YOLOX
model was optimized with TensorRT to allow its deployment on low-cost embedded de-
vices. The performance of the CenterNet model was accelerated with TensorRT during
a video analysis by Tao et al. [48]. In addition, TensorRT plays an important role in au-
tonomous vehicle applications. Trajectory prediction is a critical task in self-driving due to
limited computation resources and strict inference timing constraints. Optimization of these
prediction models with TensorRT has resulted in low latency and high throughput [49].

Modern DNN accelerators, such as tensor processing units (TPUs) [50] deployed in
Google Coral [51], are highly optimized for artificial intelligence (AI) workloads, as they are
application-specific integrated circuits (ASICs) used to accelerate deep learning workloads.
High-bandwidth memory (HBM), which provides much higher bandwidth compared to
dual in-line memory modules (DIMMs), is often deployed along with TPUs. However,
HBM typically has limited capacity compared to a DIMM. Quantization plays an important
role by reducing the memory requirement of the models, enabling more models to fit into
memory with a limited size such as HBM. Quantization can alleviate memory bandwidth
bottlenecks for large and unquantized models by reducing access to the large-capacity
DIMM [52].

3. Quantization in Deep Learning

Neural networks require a great deal of memory and computing power. Whether
running in the cloud or on smaller devices such as smartphones or edge devices, optimizing
the memory and computing power of DNNs is a very important way to reduce the required
computing resources and costs. One way to do this is quantization [53], which involves
using lower-precision data types (as shown in Figure 1) to represent the network’s weights
and activations. By using fewer bits or simple data types, it is possible to reduce the
required amount of memory and computation, making the network run more efficiently
and faster.

Figure 1. Numerical representation of different data types.

Quantization [54] is an optimization technique that represents weights and activations
ranging from higher-precision to lower-precision data types. Using a data type with a lower
number of bits yields benefits such as reduced memory usage, lower energy consumption,
and faster execution of operations [55]. Additionally, quantization enables models to be

AI 2023, 4 930

deployed on embedded devices, which often support only integer data types [56]. The most
commonly used lower-precision data types in quantization are:

• FP16: half-precision IEEE floating point format.
• bfloat16: brain floating point format.
• INT8: eight-bit integer format.

These common quantization approaches are discussed in more detail in the following.

3.1. Quantization to FP16/bfloat16

Quantization from higher precision to lower precision, such as FP16/bfloat16, is a
straightforward process because these data types share the same numerical representation
scheme. However, compatibility of the hardware and sensitivity of small values of gradients
for lower precision format are the factors that need to be considered when quantizing higher
precision to lower precision.

3.2. Quantization to INT8

Quantizing from the higher precision value to the INT8 value is a more complex task
compared to quantization to FP16 or bfloat16. Unlike FP32, which can represent a large
range of real number values, INT8 can only represent 256 discrete values. The goal is to
determine the optimal approach for mapping the range [fmin, fmax] of higher precision
values into the limited space of INT8.

3.2.1. Asymmetric Signed Quantization

Let us consider a floating-point value x in [fmin, fmax]. We can map this value to a
signed integer value xq with the range [qmin, qmax] using the following Equation (1):

xq = clip(round(x/S) + Z,−2n−1, 2n−1 − 1) (1)

where:

• n is the number of bits in lower precision format after quantization. In the case of
signed INT8, the range will be [−128, 127].

• The range [fmin, fmax] is determined during the calibration stage.
• S is the scale factor and is a positive FP32 value:

S =
fmax − fmin

2n − 1
. (2)

• Z is the zero-point (which may be called the quantization bias or offset), which is the
INT8 value corresponding to a value of 0 in the FP32 space:

Z = −round(
fmin
S

)− 2n−1. (3)

The example shown in Figure 2 below maps the FP32 value to the signed INT8
precision using asymmetric signed quantization.

Figure 2. Asymmetric signed quantization example from FP32 to signed INT8.

AI 2023, 4 931

S =
5− (−2.5)

255
= 0.0294 (4)

Z = −round(
−2.5

0.0294
)− 128 = −43 (5)

xq = clip(round(4.1/0.0294)− 43,−128, 127) = 96 (6)

3.2.2. Symmetric Signed Quantization

A commonly used approach used in quantization is symmetric signed quantization [57].
In this scheme, | fmin| = | fmax| and the zero-point = 0. The quantized value for symmetric
signed quantization can be calculated using Equation (7):

xq = clip(round(x/S), qmin, qmax). (7)

Based on the precision range for signed integers, there are two types of symmetric
signed quantization, which are discussed below.

In symmetric signed quantization with full range, the range of the integer is considered as
[−2n−1, 2n−1 − 1]. For INT8, this is [−128, 127], and S is calculated using Equation (8):

S =
2×max(| fmin|, | fmax|)

2n − 1
. (8)

However, in symmetric signed quantization with restricted range, the precision range of
a signed integer is [−2n−1 + 1, 2n−1 − 1]. For INT8, this is [−127, 127] and S is computed
using Equation (9):

S =
max(| fmin|, | fmax|)

2n−1 − 1
. (9)

The simple example below demonstrates the mapping of the value 3.86 in FP32 to
the INT8 space using symmetric signed quantization with a restricted range, as depicted
in Figure 3.

Figure 3. Symmetric signed quantization scheme example with restricted range of INT8.

S =
max(| fmin|, | fmax|)

2n−1 − 1
=

8
127

= 0.0629 (10)

xq = round
(

3.86
0.0629

+ 0
)
= 61 (11)

3.3. Calibration

During quantization, calibration is the step that determines the range of model tensors,
which include weights and activations [58]. While it is relatively easy to compute the
range for weights, as the actual range is known at the time of quantization, it is less clear
for activations. The activation of a neural network layer varies based on the input data
fed to the model. Therefore, a representative set of input data samples is required to
estimate the range of activations. This set of input data samples is called the calibration
dataset. Quantization of activations is a data-dependent process that requires input data
samples. For this purpose, different approaches can be applied to address this issue.

AI 2023, 4 932

These quantization approaches are summarized in Table 1 based on accuracy effects and
calibration data requirements.

Table 1. Quantization techniques with accuracy effects and data requirements.

Quantization Mode Data Requirement Accuracy

Post-training dynamic [59] Not required Small decrease

Post-training static [59] Unlabelled data Small decrease

Quantization-aware training [60] Training data Negligible decrease

Mixed precision [41,61] Training data Negligible decrease

3.4. Post-Training Dynamic Quantization

Generally, weights are quantized to lower precision, as they are known before the
inference stage and their range can be computed for the quantization. Activation values
are unknown prior to the inference stage; therefore, it is hard to find the scale factor and
zero-point for the quantization of activation tensors. In this type of quantization, the range
of activation tensors is calculated dynamically during the inference stage using input
samples; this is called post-training dynamic quantization [62]. This technique yields
excellent results with minimal effort, however, it can be slower than static quantization due
to the calculation overhead introduced by computing the range of activation during the
inference stage.

3.5. Post-Training Static Quantization

During the quantization process, the range for each activation is typically computed
prior to the inference stage [59]. This requires a calibration dataset that can be passed
through the model and profiling of activation values. To achieve this, the following steps
are required:

• Perform a certain number of forward passes on a calibration dataset, which is usually
around 150–200 samples, and record activation values.

• Compute the ranges for each activation using calibration techniques such as min-max,
moving average of min-max, or histogram.

• Calculate the scale factor and zero-point using the range of activation tensors used to
perform quantization.

3.6. Quantization Error

Model accuracy may be reduced due to post-training quantization in deep learning.
When the weights and activation values of the model are quantized to a low-precision
format, errors may be introduced due to rounding and clipping operations in quantization.

• Rounding errors are a type of numerical error that occur when a real number with
high precision is approximated by a low-precision value. When rounding numbers,
especially during calculations involving floating-point arithmetic, the result may not
be exact and may differ slightly from the true value. Rounding errors can accumulate
in quantization and affect the accuracy of the model.

• Clipping errors occur when a high-precision value is mapped or quantized to a
discrete set of values or a limited range. This mapping introduces error because the
quantized value may not precisely represent the original value.

The total quantization error is the sum of the rounding and clipping errors over a
given dataset, as depicted in Equation (12):

errorquant = ∑
dataset

errorrounding + errorclipping. (12)

AI 2023, 4 933

Quantization may lead to information loss, as values are mapped to a smaller set of
discrete levels. This information loss can impact the model’s ability to differentiate between
similar inputs, resulting in a reduction in accuracy, as shown in Figure 4.

Figure 4. Quantization error in FP32 and INT8 precision formats.

3.7. Accuracy Recovery Techniques in Quantization

Many deep learning models experience accuracy loss due to quantization errors.
To address this problem, several techniques can be used to retain accuracy, including:

• Quantization-Aware Training (QAT)
• Mixed Precision Training

3.7.1. Quantization-Aware Training

The objective of this training is to increase the performance (accuracy) of the model
by simulating inference stage quantization [60]. To achieve this, the DNN weights and
activations are approximated in a low-precision format during training without actually
reducing the precision. The neural network’s forward and backward passes implement
low-precision weights, and the loss function adjusts the quantization errors that may
occur due to the low-precision values. This technique allows the model to perform more
accurately during the inference stage, as it familiarizes the model with the quantization
effect during training.

3.7.2. Mixed Precision Training

This method [61] similarly helps the model to familiarize itself with the quantization
effect during training while reducing the precision of model tensors such as weights,
activations, and gradients. Therefore, certain operations are performed in a lower-precision
format while necessary information is stored in single-precision for critical components of
the network. Mixed precision training speeds up computational processes and significantly
reduces training time. The use of Tensor cores in the Nvidia Hopper, Ampere, Turing,
and Volta architectures significantly improves the overall training speed, particularly for
complex models. For mixed precision training, two steps are essential:

• The model tensors are converted into lower precision where applicable.
• Loss scaling is incorporated to preserve small gradient values.

The training dataset works as calibration dataset to compute the range of weights and
activation tensors for scale factor and zero-point of quantization.

Automatic Mixed Precision is an extension of mixed precision training that automat-
ically reduces the precision of appropriate model tensors during training and scales up the
loss to preserve the small gradients in low-precision formats.

Quantization-aware training and mixed precision training differ in terms of the fol-
lowing aspects. The primary goal of mixed precision training is to decrease training
time and memory usage by reducing the precision of network data wherever appropriate.
Quantization-aware training does not prioritize this aspect; rather, it makes the network
aware of the quantization effect by emulating quantized data in the network. Mixed

AI 2023, 4 934

precision training leverages a real low bit-width format, which accelerates both forward
and backward passes in neural network training due to hardware support, such as in
Tensor cores. Quantization-aware training, on the other hand, does not require an actual
low bit-width format or corresponding hardware support. A summary of quantization
techniques is depicted in Figure 5.

Figure 5. Categorization of quantization.

4. TensorRT (TRT) and TensorFlow-TRT Frameworks

Nvidia’s TensorRT (TRT) [63] is a high-performance deep learning inference frame-
work. It works as a deep-learning compiler that is specifically designed to optimize Tensor-
Flow/PyTorch models for efficient inference on NVIDIA devices. TensorFlow-TensorRT
(TF-TRT) is an application programming interface (API) of Nvidia’s TRT in TensorFlow.

Nvidia TensorRT is a powerful inference optimizer that enables performing inference
with lower-precision on GPUs. By integrating TensorRT with TensorFlow, users can easily
apply TensorRT optimization techniques to their TensorFlow models. The optimization pro-
cess targets the supported TensorFlow model layers while leaving unsupported operations
for native execution in TensorFlow.

TF-TRT utilizes many of TensorRT’s capabilities to accelerate inference performance.
Among of these capabilities are:

• Different precision modes
• Post-training quantization
• INT8 quantization

This section provides an overview of the above capabilities and illustrates how to
use them.

4.1. Quantization with Different Precision Modes

TensorRT can convert activations and weights to lower precisions, resulting in faster
inference during runtime. The precision mode, determined by the “precision_mode” ar-
gument, can be set to FP32, FP16, or INT8. Utilizing lower precision can provide higher
performance with supported hardware such as Tensor cores.

The FP16 mode, with supported hardware such as Tensor cores or half-precision
hardware, boosts inference performance with little accuracy loss. On the other hand,
the INT8 precision mode utilizes Tensor cores or integer hardware instructions, offering
the best performance in terms of latency and throughput. However, INT8 quantization
may introduce quantization errors due to rounding and clipping operations, leading to
accuracy degradation.

AI 2023, 4 935

Different precision modes such as FP32, FP16, and INT8 can be set independently.
TensorRT has the flexibility to choose a higher-precision kernel for the part of the model
if it leads to a lower overall runtime or if a low-precision implementation is unavailable.
This mixed selection of precision modes offers better performance in terms of latency and
throughput in the inference stage.

4.2. Post-Training Quantization in TF-TRT

TF-TRT predominantly uses post-training quantization (PTQ). PTQ is applied to
pretrained models to reduce their size and improve throughput with a small reduction
in accuracy.

During the calibration of post-training static quantization, TensorRT utilizes “calibra-
tion” data to estimate the scale factor and zero-point for each tensor based on its dynamic
distribution and range. A representative input data loader should be passed during the
quantization process to ensure meaningful scale factors for activations. Using a large and
diverse dataset for calibration, such as the test dataset or its subset, can provide a better
range and distribution for activations.

4.3. INT8 Quantization

TensorRT supports 8-bit integer precision mode. It converts high-precision values into
INT8 precision values using symmetric signed quantization.

The scaling factor S is provided as follows:

S =
max(| fmin|, | fmax|)

127
(13)

where fmin and fmax provide a range of floating point values for the given tensor.
For a given scale S, quantization/dequantization operations can be represented

as follows:
xq = quantize(x, S) = clip(round(

x
S
),−128, 127) (14)

where:

• xq is a quantized value in the range [−128, 127].
• x is a floating-point value of the tensor.

Using the same formula, de-quantization can be performed through a multiplication
operation using Equation (15). De-quantization is an important step, as certain model
operations are not supported by TensorRT; in such cases, de-quantization is required in
order to keep the model subnetworks compatible with one another.

x = dequantize(xq, S) = xq × S (15)

TF-TRT Workflow

After installing the TensorRT API for the Tensorflow framework and obtaining a
trained TensorFlow model, the model is exported in the saved format. TF-TRT then applies
different optimization techniques to the supported layers. The result is a TensorFlow graph
in which the supported layers replaced by TensorRT-optimized engines. The complete
workflow of TF-TRT is shown in Figure 6.

Figure 6. TF-TRT workflow during and after the training stage.

TF-TRT operations involve three steps:

AI 2023, 4 936

• Model Partitioning: TensorRT scans the TensorFlow model to split the subnetworks
that can be optimized based on supported operations.

• Layer Conversion: supported TensorFlow layers within each subnetwork are con-
verted into TensorRT layers.

• Engine Optimization: the subnetworks are transformed into TensorRT engines, as
shown in Figure 7.

Figure 7. (a) TensorFlow model for conversion, (b) partitioning of supported TensorFlow layers for
TRT Engine, and (c) conversion to TRT Engine.

TF-TRT automatically scans and partitions the TensorFlow model network into com-
patible subnetworks for optimization and execution by TensorRT. During the conversion
process, TensorRT performs critical transformations and optimizations, including constant
folding, pruning unnecessary nodes, and layer fusion. The aim of TF-TRT is to convert
as many operations as possible into a single TensorRT engine that will lead to maximum
performance in terms of latency and throughput.

5. Methodology

This section outlines the methodology adopted in this study. It consists of a detailed
explanation of the various aspects involved in the experimentation, including the datasets
used for the study, the models employed, the hardware used, and the metrics considered
for performance evaluation.

5.1. Datasets

This study utilized two datasets, CIFAR-10 and Cats_vs_Dogs, to evaluate the effect of
different quantization approaches on various deep learning models. The CIFAR-10 dataset,
shown in Figure 8, consists of 32× 32 color images with ten classes. The total number of
images in the dataset is 60,000, and each class contains an equal number of images, for
a total of 6000 images per class. The CIFAR-10 dataset is divided into training images,
validation, and test images. There are 50,000 training images and 5000 each of validation
and test images. In this paper, the size of the CIFAR-10 images used for model training and
optimization was 48× 48× 3. The main reason for resizing the CIFAR-10 images was due
to MobileNet_v1. Because of the lightweight and efficient architecture of MobileNet_v1,
it trained quickly both with AMP and without AMP on the CIFAR dataset. Therefore,
in order to observe good training time behavior with AMP and without AMP, a size of
48× 48× 3 was used.

AI 2023, 4 937

Figure 8. CIFAR-10 dataset with ten examples in each class [64].

The second dataset used for the model training and optimization was cats_vs_dogs,
shown in Figure 9. It consists of color images with two classes. There are 3000 total images
and each class contains an equal number of images, for 1500 per class. The dataset is
divided into training images and validation images, including 2000 Training images and
500 each of validation and test images. In this paper, the size of the cats_vs_dogs images
used for model training and optimization was 128× 128× 3. These datasets were processed
and trained in the TensorFlow framework using the 22.03 Nvidia container [65].

Figure 9. Cats_vs_dogs dataset with five examples in each class [66].

5.2. Models

The following models were used to observe the effect of optimizations during the
training and inference stages.

5.2.1. VGG16

This is a CNN model comprised of sixteen layers, which consist of thirteen convolution
layers with a kernel size of 3× 3 and three fully connected layers after the convolutional
layers [5]. All layers use the ReLU activation function for except the last layer, which is
equipped with a softmax activation function.

5.2.2. MobileNet_v1

This is another CNN model, commonly used in mobile and embedded vision
applications [67]. This network is comprised of 28 layers. It employs depthwise sep-
arable convolutions, which enable lightweight DNNs and helps to reduce latency and
computational requirements on mobile and embedded devices. It has gained popularity in
various applications, such as object detection, classification, and localization in resource-
constrained mobile and embedded systems.

5.2.3. ResNet-50

ResNet (short for Residual Network) is a deep CNN model that utilizes the concepts
of residual learning and skip connections to avoid the exploding/vanishing gradients

AI 2023, 4 938

problem [68]. This concept enables the model to become a large and deep network. This
model consists of convolutional layers and identity blocks followed by a final softmax layer.

5.3. Hardware

The hardware used in this paper was an Nvidia Quadro RTX 4000 [69], which consists of
Turing architecture with a compute capability of 7.5. The compute capability of a GPU determines
the set of features and general specifications of the GPU [70]. It has 2304 CUDA cores for deep
learning computation and 288 tensor cores that support quantized data and mixed-precision
processing. The GPU memory uses GDDR6 technology with a capacity of 8 GB.

5.4. Metrics

The following are the metrics used to quantify model performance across different
quantization techniques.

• Accuracy: a metric that summarizes the performance of a classification model by
calculating the fraction of correct predictions over the total number of predictions, as
provided by Equation (16):

Accuracy =
Number of correct predictions

Total number of predictions
. (16)

• Average Training Time: the training time of the model for a specific number of epochs.
The speedup of AMP in terms of average training time against the case without AMP
can be computed by dividing the total training time without AMP by the total training
time with AMP, as shown in Equation (17):

SpeedupTraining time =
Training timewithout AMP

Training timewith AMP
. (17)

• Memory Usage in Training: the size of the memory used during the training process.
The improvement in memory usage can be quantified by calculating the memory
reduction factor, as provided in Equation (18):

Reduction FactorMemory =
Memorywithout AMP

Memorywith AMP
. (18)

• Latency in Inference: the time taken by the model to predict one input unit. The re-
duction in latency can be computed by the speedup, as provided by Equation (19):

SpeedupLatency =
Latencywithout quantization

Latencywith quantization
. (19)

• Throughput in Inference: the measure of the number of images predicted by the
model in one second. The increase in throughput can be computed by the improve-
ment factor (IF), as in Equation (20):

Improvement Factor Throughput =
Throughputwith quantization

Throughputwithout quantization
. (20)

Because the training time speedup, memory reduction factor, latency speedup, and
throughput improvement factor are the ratios of two quantities, these terms have no units.

6. Results and Discussion

This section presents the experimental results in terms of the training time, memory
usage, accuracy, latency, and throughput, displaying the outcomes of different batch sizes,
image sizes, and datasets. The batch size is the number of images used in one iteration

AI 2023, 4 939

of the training or inference model. This section then discusses the impact of quantization
techniques on various models for different batch sizes.

6.1. Training Stage

In the training stage, we trained three models: VGG16, ResNet-50, and MobileNet_v1.
These models were trained with and without the AMP optimization technique. The perfor-
mance of the base models and optimized models were recorded for different batch sizes,
datasets, and image sizes to observe model behavior. Two metrics were measured during
the training stage, namely, the average training time and the memory utilization. The im-
ages in the CIFAR-10 dataset were resized to (48× 48× 3), while those in the Cats_vs_Dogs
dataset were resized to (128× 128× 3).

6.1.1. Training Time

The AMP optimization technique reduces the training time significantly for large
batch sizes. The training time speedup shows an increasing trend with an increase of batch
sizes (Figure 10); however, a variation in speedup is observed for different batch sizes and
for different models as shown in Tables 2 and 3. For MobileNet_v1 and ResNet-50, the
training time speedup is recorded as even less than 1 for the batch size of 32. This is mainly
due to two reasons:

• AMP has a component processing time (quantization/dequantization and loss scaling)
in addition to the training time.

• VGG16 has 138 million parameters, which is far more than MobileNet_v1 or ResNet-50,
which have 4.2 million and 13 million parameters, respectively.

Table 2. Training time and speedup calculation with AMP for CIFAR-10 (image size: 48× 48× 3).

Batch Size

Training Time (ms)

Without AMP With AMP Speedup

VGG16 ResNet-50 MBNet VGG16 ResNet-50 MBNet VGG16 ResNet-50 MBNet

32 480.14 659.36 253.27 265.44 711.65 367.09 1.81 0.93 0.69

64 373.22 403.44 138.8 187.99 360.74 192.23 1.99 1.12 0.72

128 310.14 300.74 94.49 143.61 193 110.48 2.16 1.56 0.86

256 291.32 269.95 78.14 121.49 115.46 57.29 2.40 2.34 1.36

512 256.16 257.65 74.6 112.28 89.54 37.87 2.28 2.88 1.97

1024 304.14 231.16 70.93 109.43 75.22 34.61 2.78 3.07 2.05

MBNet = MobileNet_v1.

Table 3. Training time and speedup calculation with AMP for cats_and_dogs (image size:
128× 128× 3).

Batch Size

Training Time (ms)

Without AMP With AMP Speedup

VGG16 ResNet-50 MBNet VGG16 ResNet-50 MBNet VGG16 ResNet-50 MBNet

8 114.81 120.95 59.83 63.51 130.59 70.84 1.81 0.93 0.84

16 78.94 86.82 41.96 50.19 72.84 39.25 1.57 1.19 1.07

32 70.79 69.94 35.29 45.4 44.89 22.28 1.56 1.56 1.58

64 72.61 63.52 33.85 41.92 37.53 16.26 1.73 1.69 2.08

128 79.8 61.87 33.45 42.36 33.99 21.15 1.88 1.82 1.58

256 OOM OOM 36.19 49.12 31.5 15.09 N/A N/A 2.40

OOM = Out of Memory, MBNet = MobileNet_v1, N/A = Not applicable.

AI 2023, 4 940

For models such as MobileNet_v1 and ResNet-50, which have low batch sizes and
small parameter counts, the processing time for AMP components becomes significant
compared to the low-precision format time reduction effect, causing a reduction in the
speedup of training time. In the case of large batch sizes or models such as VGG16 with a
large number of parameters, the AMP component processing time becomes insignificant,
providing a great speedup in training time. While the AMP optimization technique pro-
vides a great speedup, a variation in this speedup is observed for different batch sizes. This
can be avoided by profiling the behavior of the model for different batch sizes and selecting
the optimal batch size that provides a desirable speedup in training time.

Figure 10. Training time speedup comparison with AMP for CIFAR-10 (left) and CATS_VS_DOGS (right).

6.1.2. Memory Usage

We observed that memory usage was optimized for both datasets by the quantiza-
tion techniques. For MobileNet_v1 and ResNet-50, memory utilization was optimized
by roughly the same degree, particularly with large batch sizes, as shown in Figure 11.
For VGG16, memory was optimized drastically for small batch sizes, up to 12× in the
Cats_vs_Dogs dataset and 8.88× in the CIFAR-10 dataset, as shown in Table 4. The memory
reduction factor decreased with the increase in batch size for VGG16 in both datasets,
with the AMP technique providing roughly 3× memory optimization for a batch size
of 128 on the Cats_vs_Dogs dataset. The reason for this effect is that at low batch sizes
the AMP memory reduction effect is more significant for large parameter models such as
VGG16, while for either a large batch size or small parameter number, as in such models as
MobileNet_v1 and ResNet-50, the memory reduction factor shows negligible differences.

Table 4. Memory reduction calculation with AMP for CIFAR-10 (image size: 48× 48× 3).

Batch Size

Memory Usage (GB)

Without AMP With AMP Memory Reduction Factor

VGG16 ResNet-50 MBNet VGG16 ResNet-50 MBNet VGG16 ResNet-50 MBNet

32 1.42 0.22 0.13 0.16 0.21 0.09 8.88 1.05 1.44

64 1.67 1.00 0.22 0.23 0.25 0.14 7.26 4.00 1.57

128 2.13 1.1 0.36 0.35 0.39 0.24 6.09 2.82 1.50

256 3.24 1.32 0.7 0.53 0.66 0.49 6.11 2.00 1.43

512 3.78 2.66 1.47 1.23 1.24 0.88 3.07 2.15 1.67

1024 5.79 5.23 2.79 1.81 2.34 1.77 3.20 2.24 1.58

MBNet = MobileNet_v1.

AI 2023, 4 941

Figure 11. Memory performance comparison with AMP for CIFAR-10 (left) and CATS_VS_DOGS (right).

For the batch size of 256, ResNet-50 and VGG16 could not be trained on our 8 GB
RTX4000 GPU due to out-of-memory issues, while the AMP technique allowed training
to take place on this GPU, as shown in Table 5. This represents a significant advantage of
AMP optimization technique.

Table 5. Memory reduction calculation with AMP for cats_and_dogs (image size: 128× 128× 3).

Batch Size

Memory Usage (GB)

Without AMP With AMP Memory Reduction Factor

VGG16 ResNet-50 MBNet VGG16 ResNet-50 MBNet VGG16 ResNet-50 MBNet

8 2.64 0.33 0.21 0.22 0.24 0.13 12.00 1.38 1.62

16 2.99 0.59 0.34 0.33 0.36 0.18 9.06 1.64 1.89

32 3.69 1.18 0.67 0.53 0.6 0.35 6.96 1.97 1.91

64 4.39 2.59 1.14 0.96 1.1 0.7 4.57 2.35 1.63

128 4.85 4.5 2.57 1.58 2.02 1.31 3.07 2.23 1.96

256 OOM OOM 4.34 2.91 4.11 2.49 N/A N/A 1.74

OOM = Out of Memory, MBNet = MobileNet_v1, N/A = Not applicable.

It was observed that the memory improvement factor during the training stage was
reduced on both datasets, while training time speedup varied across different models
at different batch sizes with the increasing trend. This is mainly because AMP includes
additional components during the training stage, as it includes storage of weights in FP32,
conversion of FP32 to FP16, and scaling of gradients. These additional components have
less of an effect with large batch sizes; however, when the batch size is small, the processing
time for these additional AMP components becomes significant and restricts the attainable
speedup of training time. Therefore, a large batch size may be preferred for the training
stage if a large training time speedup is required. Large batch sizes reduce the memory
reduction factor and provide a great speedup in training time. The optimal batch size
that provides both a desirable training time speedup and memory reduction factor can be
selected by profiling the model performance for various batch sizes.

6.2. Inference

In this paper, the TF-TRT framework is used for inference optimizations. The key
capabilities of the TF-TRT framework include different precision modes, such as FP32,
FP16, and INT8 quantization. TF-TRT provides significant performance improvements
during the inference stage by reducing the latency and increasing the throughput. In this
paper, the performance of TF-TRT precision modes such as FP32, FP16, and INT8 has been
profiled for different batch sizes, datasets, and image sizes. Speedup and improvement
factor graphs are shown and results are discussed in this subsection.

AMP helps to adjust model weights during the training stage due to quantization
errors, with the model saved in FP32 format when it has been trained. After training,

AI 2023, 4 942

post-training quantization converts the model to low-precision formats, which significantly
increases the latency speedup and throughput improvement factor when using supported
hardware such as Tensor cores.

It has been observed that for small image sizes, in the CIFAR-10 dataset, as the
batch size increases, latency speedup almost stays the same as shown in Tables 6 and 7.
This effect is observed for all models. On the other hand, when image size is increased
in Cats_vs_Dogs, then latency speed up shows a decreasing trend with the increase of
batch size as shown in Figures 12 and 13. Similar behavior is observed for throughput
performance. With a small dataset, memory access time for the input batch is insignificant
as compared to the low-precision format time reduction effect for model weights and
activation values. However, with large image sizes, memory access time becomes significant
and it grows as the batch size increases as shown in Tables 8 and 9. This causes a reduction
in latency speedup and throughput improvement as shown in Figures 14 and 15.

Table 6. CIFAR-10 latency speedup results with TF-TRT precision modes for different models.

Batch Size

Latency (ms)

VGG16 ResNet-50 MobileNet_v1

Base FP32 FP16 INT8 Base FP32 FP16 INT8 Base FP32 FP16 INT8

8 39.3 4.7 1.5 1.2 47 4.2 1.9 1.9 39.8 1.9 1.4 1.3

16 39.4 5.6 1.5 1.4 47.9 4.2 2.1 1.9 39.8 1.9 1.4 1.4

32 38.1 7.9 1.7 1.5 48.1 4.6 2.1 2 37.3 1.9 1.5 1.4

64 55.2 14.2 3 1.8 60.2 6 2.2 2.1 45.7 2.2 1.6 1.5

Table 7. Cats_vs_Dogs latency speedup results with TF-TRT precision modes for different models.

Batch Size

Latency (ms)

VGG16 ResNet-50 MobileNet_v1

Base FP32 FP16 INT8 Base FP32 FP16 INT8 Base FP32 FP16 INT8

8 47.8 10.6 2.8 2 49.1 4.6 2.6 2.1 40.8 2.2 1.9 1.8

16 51.9 19.1 5.1 3.1 51.4 7.9 3.3 2.8 41.2 2.8 2.3 2.3

32 54.2 37.7 10.1 5.6 52.8 15 5.2 3.5 43.2 4.8 3.1 3.2

64 83.3 76 19.6 11.2 77.3 28.9 9.1 6.3 58.6 9.2 4.7 3.9

Table 8. CIFAR-10 throughput improvement factor results with TF-TRT precision modes for
different models.

Batch Size

Throughput (Images per Second)

VGG16 ResNet-50 MobileNet_v1

Base FP32 FP16 INT8 Base FP32 FP16 INT8 Base FP32 FP16 INT8

8 204 1689 5470 5455 170 1916 4105 4123 201 4286 5545 5947

16 406 2858 10,554 10,780 334 3771 7747 8301 402 8430 11,271 11,817

32 840 4026 18,326 21,065 666 6887 15,254 16,245 857 16,890 20,984 23,040

64 1160 4491 21,475 35,960 1063 10,618 30,599 30,975 1402 28,950 40,877 42,037

AI 2023, 4 943

Table 9. Cats_vs_Dogs throughput improvement factor results with TF-TRT precision modes for
different models.

Batch Size

Throughput (Images per Second)

VGG16 ResNet-50 MobileNet_v1

Base FP32 FP16 INT8 Base FP32 FP16 INT8 Base FP32 FP16 INT8

8 167 757 2858 4081 163 1747 3086 3774 196 3563 4105 4470

16 308 839 3149 5224 311 2031 4859 5783 388 5788 7041 7108

32 591 848 3169 5711 606 2127 6154 9077 730 6716 10,280 10,024

64 768 842 3271 5718 828 2218 7033 10,172 1093 6967 13,670 16,368

Figure 12. CIFAR-10 latency speedup comparison with TF-TRT for VGG16 (left), ResNet-50 (middle),
and Mobilenet_v1 (right) models.

Figure 13. Cats_vs_Dogs latency speedup comparison with TF-TRT for VGG16 (left), ResNet-50
(middle), and Mobilenet_v1 (right) models.

Figure 14. CIFAR-10 throughput improvement factor comparison with TF-TRT for VGG16 (left),
ResNet-50 (middle), and Mobilenet_v1 (right) models.

Figure 15. Cats_vs_Dogs throughput improvement factor comparison with TF-TRT for VGG16 (left),
ResNet-50 (middle), and MobileNet_v1 (right) models.

Low-precision formats offer a large latency speedup and throughput improvement
factor for VGG16; however, this is not the case for MobileNet_v1. This effect is due to
the difference in model parameters. VGG16, with a large number of parameters, shows

AI 2023, 4 944

great latency speedup and throughput improvement in low-precision formats. In the case
of MobileNet_v1, because it inherently has fewer parameters and efficient architecture,
the post-training quantization effect of TF-TRT does not show significant speedup between
low-precision formats.

The results reveal that MobileNet_v1 exhibits less speedup and improvement in
performance metrics as compared to ResNet-50 and VGG16 for AMP and various TensorRT
low-precision formats. This is mainly due to the depthwise separable convolutional layers
in MobileNet_v1, which reduce the number of parameters and computations used in
convolutional operations. Hence, MobileNet_v1 shows worse quantization performance in
terms of training time and memory.

6.3. Model Accuracy

Model accuracy was compared for different precision modes of post-training quanti-
zation with and without AMP training. We observed that accuracy drops slightly in FP16
and INT8 quantization without AMP training, whereas in certain cases accuracy for FP16 is
slightly increased. This is mainly due to the fact that quantization provides regularization
in these cases. Therefore, lowering the precision from FP32 to FP16 results in a slight
increase in accuracy on the CIFAR-10 test dataset for VGG16 without the AMP technique,
as shown in Table 10.

With AMP training, model accuracy becomes more consistent with regard to the
quantization techniques for TensorFlow FP32, TFTRT FP32, and TFTRT FP16, as shown in
Table 11. Therefore, AMP not only provides memory reduction and training time speedup,
it can help to adjust model weights during the training stage in order to compensate for
quantization error due to low-precision values of weights and activations.

Table 10. CIFAR-10 accuracy for different models.

Model Accuracy

Model TensorFlow FP32 TF-TRT FP32 TF-TRT FP16 TF-TRT INT8

MobileNet_v1 without AMP 85.383 85.383 85.332 83.921

MobileNet_v1 with AMP 84.576 84.576 84.576 84.274

VGG16 without AMP 89.120 89.120 89.171 88.894

VGG16 with AMP 88.709 88.709 88.709 88.960

ResNet-50 without AMP 86.895 86.895 86.845 85.721

ResNet-50 with AMP 87.01 87.01 87.01 88.15

Table 11. Cats_vs_Dogs accuracy for different models.

Model Accuracy

Model TensorFlow FP32 TF-TRT FP32 TF-TRT FP16 TF-TRT INT8

MobileNet_v1 without AMP 96.484 96.484 96.289 95.898

MobileNet_v1 with AMP 96.289 96.289 97.465 96.484

VGG16 without AMP 92.578 93.554 92.773 92.359

VGG16 with AMP 93.516 93.516 93.516 93.724

ResNet-50 without AMP 94.335 94.335 94.110 93.825

ResNet-50 with AMP 94.117 94.117 94.214 94.017

6.4. Quantization in Other Deep Learning Frameworks

In addition to AMP and TRT/TF-TRT, there are several other quantization libraries
and frameworks available for deep learning models. These libraries offer tools and tech-
niques to quantize model weights and activations in order to make them more efficient

AI 2023, 4 945

for deployment on resource-constrained devices. TensorFlow Lite is one of those quanti-
zation libraries; it includes tools for quantization and post-training quantization (PTQ).
It is commonly used for deploying models on mobile and edge devices. PyTorch pro-
vides support for quantization-aware training and post-training quantization, enabling
efficient deployment of models. The Open Neural Network Exchange (ONNX) runtime,
an inference engine for ONNX models, offers support for quantized models, allowing for
faster and more memory-efficient inference. The CMSIS (Cortex Microcontroller Software
Interface Standard) library includes CMSIS-NN, which provides quantization functions for
optimizing models on ARM Cortex-M processors and microcontrollers. BNN-PYNQ is a
library for quantized neural networks targeting FPGA platforms. Intel’s OpenVINO toolkit
includes tools for quantizing and optimizing deep learning models for Intel hardware,
including central processing units (CPUs) and accelerators.

These libraries provide varying levels of support for different hardware platforms
and model architectures. The choice of a quantization library may depend on the target
hardware, the specific deep learning framework being used, and the level of customization
and optimization required for an application. We clarify that our work can be extended to
these frameworks and other deep learning models to determine key factors affecting the
performance of quantization for these frameworks on different deep learning models.

7. Conclusions

In this paper, we have studied the performance of different quantization techniques
during the training and inference stages. The behavior of VGG16, ResNet-50, and Mo-
bileNet_v1 were observed with different batch sizes, datasets, and image sizes. For the
AMP and TF-TRT low-precision formats, we observed the trends in different performance
metrics such as accuracy, memory usage, training time, latency, and throughput. In order to
select the appropriate batch size for training and inference, model profiling can help to see
the trend of different metrics in the training and inference stages and choose the optimal
batch size that provides the most desirable performance.

In this work, we have directed our attention to classification models in order to de-
termine the prime factors in classification model architectures that affect quantization
performance. We found that model parameters are a major factor that affects quantiza-
tion performance. VGG16 has a large number of parameters, while MobileNet_v1 and
ResNet-50 reduce their parameters using depthwise separable convolutional layers and
1× 1 filters, resulting in lesser speedup and improvement factors after quantization as
compared to VGG16.

This work can be extended to other deep learning models, such as natural language
processing, graph neural networks, pose estimation, and segmentation models, in order
to obtain insights into the effect of quantization on the performance of these models.
The characterization of the optimization techniques adopted in deep learning frameworks
can help researchers to adopt best practices for using these optimizations to obtain efficient
results in the training and inference stages. This characterization can enable researchers
to develop more efficient deep learning optimization techniques by understanding their
performance on different models and datasets.

Author Contributions: Conceptualization, M.A.S. and A.M.; methodology, M.A.S. and A.M.; soft-
ware, M.A.S.; validation, M.A.S. and A.M.; formal analysis, M.A.S.; investigation, A.M.; resources,
M.A.S. and A.M.; data curation, M.A.S.; writing—original draft preparation, M.A.S. and A.M.;
writing—review and editing, M.A.S., A.M. and J.K.; supervision, A.M.; project administration,
A.M.; funding acquisition, M.A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

AI 2023, 4 946

Data Availability Statement: The source code for this work is available at: https://github.com/
alishafique3/Deep_Learning_Performance_Characterization_for_Quantization_Frameworks (accessed
on 10 October 2023).

Acknowledgments: The authors of this study acknowledge the University of Engineering and
Technology (UET) Lahore for support and affiliation with author Muhammad Ali Shafique.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
3. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489.
[CrossRef] [PubMed]

4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

5. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
6. Costa-jussà, M.R.; Fonollosa, J.A. Latest trends in hybrid machine translation and its applications. Comput. Speech Lang. 2015,

32, 3–10. [CrossRef]
7. Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural

Networks Learn. Syst. 2020, 32, 604–624. [CrossRef]
8. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep Learning Based Recommender System: A survey and New Perspectives. ACM Comput.

Surv. (CSUR) 2019, 52, 1–38. [CrossRef]
9. Ohn-Bar, E.; Trivedi, M.M. Looking at Humans in the Age of Self-driving and Highly Automated Vehicles. IEEE Trans. Intell. Veh.

2016, 1, 90–104. [CrossRef]
10. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.

End to end Learning for Self-driving Cars. arXiv 2016, arXiv:1604.07316.
11. Lu, H.; Li, Y.; Mu, S.; Wang, D.; Kim, H.; Serikawa, S. Motor Anomaly Detection for Unmanned Aerial Vehicles Using

Reinforcement Learning. IEEE Internet Things J. 2017, 5, 2315–2322. [CrossRef]
12. Hadidi, R.; Cao, J.; Woodward, M.; Ryoo, M.S.; Kim, H. Distributed Perception by Collaborative Robots. IEEE Robot. Autom. Lett.

2018, 3, 3709–3716. [CrossRef]
13. Pfeiffer, M.; Schaeuble, M.; Nieto, J.; Siegwart, R.; Cadena, C. From Perception to Decision: A Data-driven Approach to End-to-end

Motion Planning for Autonomous Ground Robots. In Proceedings of the 2017 IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1527–1533.

14. Merck, M.L.; Wang, B.; Liu, L.; Jia, C.; Siqueira, A.; Huang, Q.; Saraha, A.; Lim, D.; Cao, J.; Hadidi, R.; et al. Characterizing the
Execution of Deep Neural Networks on Collaborative Robots and Edge Devices. In Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (Learning), Chicago, IL, USA, 28 July–1 August 2019; pp. 1–6.

15. Han, S. Efficient Methods and Hardware for Deep Learning. Available online: http://cs231n.stanford.edu/slides/2017/cs231n_
2017_lecture15.pdf (accessed on 28 October 2022).

16. Yasrab, R.; Gu, N.; Zhang, X. An Encoder-Decoder Based Convolution Neural Network (CNN) for Future Advanced Driver
Assistance System (ADAS). Appl. Sci. 2017, 7, 312. [CrossRef]

17. Aladem, M.; Rawashdeh, S.A. A Single-Stream Segmentation and Depth Prediction CNN for Autonomous Driving. IEEE Intell.
Syst. 2020, 36, 79–85. [CrossRef]

18. Yang, M.; Wang, S.; Bakita, J.; Vu, T.; Smith, F.D.; Anderson, J.H.; Frahm, J.M. Re-thinking CNN Frameworks for Time-Sensitive
Autonomous-Driving Applications: Addressing an Industrial Challenge. In Proceedings of the 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), Montreal, QC, Canada, 16–18 April 2019; pp. 305–317.

19. Hasan, I.; Liao, S.; Li, J.; Akram, S.U.; Shao, L. Pedestrian Detection: Domain Generalization, CNNs, Transformers and Beyond.
arXiv 2022, arXiv:c2201.03176.

20. Muhammad Rastegari, M.C. Efficient Methods and Hardware for Deep Learning. Available online: https://nips.cc/Conferences/
2016/Schedule?showEvent=6234 (accessed on 7 January 2023).

21. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Proceedings of the Advances in Neural Information Processing Systems; Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 1877–1901.

22. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. arXiv 2016, arXiv1510.00149.

23. Yu, J.; Lukefahr, A.; Palframan, D.; Dasika, G.; Das, R.; Mahlke, S. Scalpel: Customizing DNN Pruning to the Underlying
Hardware Parallelism. ACM SIGARCH Comput. Archit. News 2017, 45, 548–560. [CrossRef]

24. Lin, J.; Rao, Y.; Lu, J.; Zhou, J. Runtime Neural Pruning. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.

https://github.com/alishafique3/Deep_Learning_Performance_Characterization_for_Quantization_Frameworks
https://github.com/alishafique3/Deep_Learning_Performance_Characterization_for_Quantization_Frameworks
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.csl.2014.11.001
http://dx.doi.org/10.1109/TNNLS.2020.2979670
http://dx.doi.org/10.1145/3158369
http://dx.doi.org/10.1109/TIV.2016.2571067
http://dx.doi.org/10.1109/JIOT.2017.2737479
http://dx.doi.org/10.1109/LRA.2018.2856261
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture15.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture15.pdf
http://dx.doi.org/10.3390/app7040312
http://dx.doi.org/10.1109/MIS.2020.2993266
https://nips.cc/Conferences/2016/Schedule?showEvent=6234
https://nips.cc/Conferences/2016/Schedule?showEvent=6234
http://dx.doi.org/10.1145/3140659.3080215

AI 2023, 4 947

25. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning Structured Sparsity in Deep Neural Networks. Adv. Neural Inf. Process. Syst.
2016, 29, 1–9.

26. Son, S.; Nah, S.; Lee, K.M. Clustering Convolutional Kernels to Compress Deep Neural Networks. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 216–232.

27. Courbariaux, M.; Bengio, Y.; David, J.P. Training Deep Neural Networks with Low Precision Multiplications. arXiv 2014,
arXiv:1412.7024.

28. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing Deep Convolutional Networks using Vector Quantization. arXiv 2014,
arXiv:1412.6115.

29. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the Speed of Neural Networks on CPUs. In Proceedings of the Deep Learning
and Unsupervised Feature Learning Workshop, NIPS 2011, Granada, Spain, 12–17 December 2011.

30. Köster, U.; Webb, T.; Wang, X.; Nassar, M.; Bansal, A.K.; Constable, W.; Elibol, O.; Gray, S.; Hall, S.; Hornof, L.; et al. Flexpoint: An
Adaptive Numerical Format for Efficient Training of Deep Neural Networks. In Proceedings of the Advances in Neural Information
Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

31. Ye, S.; Zhang, T.; Zhang, K.; Li, J.; Xie, J.; Liang, Y.; Liu, S.; Lin, X.; Wang, Y. A Unified Framework of DNN Weight Pruning and
Weight Clustering/Quantization using ADMM. arXiv 2018, arXiv:1811.01907.

32. Hadidi, R.; Cao, J.; Xie, Y.; Asgari, B.; Krishna, T.; Kim, H. Characterizing the Deployment of Deep Neural Networks on
Commercial Edge Devices. In Proceedings of the 2019 IEEE International Symposium on Workload Characterization (IISWC),
Orlando, FL, USA, 3–5 November 2019; pp. 35–48.

33. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks. Adv. Neural Inf. Process. Syst. 2016,
29, 1–9.

34. Liu, B.; Li, F.; Wang, X.; Zhang, B.; Yan, J. Ternary weight networks. In Proceedings of the ICASSP 2023–2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5.

35. Banner, R.; Hubara, I.; Hoffer, E.; Soudry, D. Scalable methods for 8-bit training of neural networks. Adv. Neural Inf. Process. Syst.
2018, 31, 1–9.

36. Chmiel, B.; Ben-Uri, L.; Shkolnik, M.; Hoffer, E.; Banner, R.; Soudry, D. Neural gradients are near-lognormal: Improved quantized
and sparse training. arXiv 2020, arXiv:2006.08173.

37. Faghri, F.; Tabrizian, I.; Markov, I.; Alistarh, D.; Roy, D.M.; Ramezani-Kebrya, A. Adaptive gradient quantization for data-parallel
sgd. Adv. Neural Inf. Process. Syst. 2020, 33, 3174–3185.

38. Kim, J.; Yoo, K.; Kwak, N. Position-based scaled gradient for model quantization and pruning. Adv. Neural Inf. Process. Syst. 2020,
33, 20415–20426.

39. Wang, N.; Choi, J.; Brand, D.; Chen, C.Y.; Gopalakrishnan, K. Training deep neural networks with 8-bit floating point numbers.
Adv. Neural Inf. Process. Syst. 2018, 31, 1–10.

40. Ginsburg, B.; Nikolaev, S.; Kiswani, A.; Wu, H.; Gholaminejad, A.; Kierat, S.; Houston, M.; Fit-Florea, A. Tensor Processing Using
Low Precision Format. U.S. Patent App. 15/624,577, 28 December 2017.

41. Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.;
et al. Mixed Precision Training. arXiv 2018, arXiv:1710.03740.

42. Munir, A.; Blasch, E.; Kwon, J.; Kong, J.; Aved, A. Artificial Intelligence and Data Fusion at the Edge. IEEE Aerosp. Electron. Syst.
Mag. 2021, 36, 62–78. [CrossRef]

43. Ravi, A.; Chaturvedi, V.; Shafique, M. ViT4Mal: Lightweight Vision Transformer for Malware Detection on Edge Devices. ACM
Trans. Embed. Comput. Syst. 2023, 22, 1–26. [CrossRef]

44. Tonellotto, N.; Gotta, A.; Nardini, F.M.; Gadler, D.; Silvestri, F. Neural network quantization in federated learning at the edge. Inf.
Sci. 2021, 575, 417–436. [CrossRef]

45. Nvidia. Nvidia TensorRT. Available online: https://developer.nvidia.com/tensorrt (accessed on 11 March 2023).
46. Wang, X.; Yue, X.; Li, H.; Meng, L. A High-efficiency Dirty-egg Detection System based on YOLOv4 and TensorRT. In Proceedings

of the 2021 International Conference on Advanced Mechatronic Systems (ICAMechS), Tokyo, Japan, 9–12 December 2021;
pp. 75–80.

47. Chunxiang, Z.; Jiacheng, Q.; Wang, B. YOLOX on Embedded Device with CCTV & TensorRT for Intelligent Multicategories
Garbage Identification and Classification. IEEE Sens. J. 2022, 22, 16522–16532.

48. Tao, L.; Hong, T.; Guo, Y.; Chen, H.; Zhang, J. Drone Identification Based on CenterNet-TensorRT. In Proceedings of the 2020
IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Paris, France, 27–29 October 2020;
pp. 1–5.

49. Wang, Z.; Guo, J.; Hu, Z.; Zhang, H.; Zhang, J.; Pu, J. Lane Transformer: A High-Efficiency Trajectory Prediction Model. IEEE
Open J. Intell. Transp. Syst. 2023, 4, 2–13. [CrossRef]

50. Akkad, G.; Mansour, A.; Inaty, E. Embedded Deep Learning Accelerators: A Survey on Recent Advances. IEEE Tran. Artif. Intell.
2023, 1, 1–19. [CrossRef]

51. Google. Coral. Available online: https://coral.ai/ (accessed on 23 September 2023).
52. Lotti, A.; Modenini, D.; Tortora, P.; Saponara, M.; Perino, M.A. Deep Learning for Real Time Satellite Pose Estimation on Low

Power Edge TPU. arXiv 2022, arXiv:2204.03296.

http://dx.doi.org/10.1109/MAES.2020.3043072
http://dx.doi.org/10.1145/3609112
http://dx.doi.org/10.1016/j.ins.2021.06.039
https://developer.nvidia.com/tensorrt
http://dx.doi.org/10.1109/OJITS.2023.3233952
http://dx.doi.org/10.1109/TAI.2023.3311776
https://coral.ai/

AI 2023, 4 948

53. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural
Networks for Efficient Integer-Arithmetic-Only Inference. arXiv 2017, arXiv1712.05877.

54. Li, Z.; Li, H.; Meng, L. Model Compression for Deep Neural Networks: A Survey. Computers 2023, 12, 60. [CrossRef]
55. Li, L.; Li, Q.; Zhang, B.; Chu, X. Norm Tweaking: High-performance Low-bit Quantization of Large Language Models. arXiv

2023, arXiv:2309.02784.
56. Kaur, I.; Jadhav, A.J. Survey on Computer Vision Techniques for Internet-of-Things Devices. In Proceedings of the 2023 IEEE

International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bali, Indonesia, 13–15
July 2023; pp. 244–250. [CrossRef]

57. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A Survey of Quantization Methods for Efficient Neural
Network Inference. arXiv 2021, arXiv:2103.13630.

58. Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; Van Baalen, M.; Blankevoort, T. A white paper on neural network
quantization. arXiv 2021, arXiv:2106.08295.

59. TensorFlow. Model Optimization. Available online: https://www.tensorflow.org/model_optimization/guide/quantization/
post_training (accessed on 23 September 2023).

60. Kirtas, M.; Oikonomou, A.; Passalis, N.; Mourgias-Alexandris, G.; Moralis-Pegios, M.; Pleros, N.; Tefas, A. Quantization-aware
training for low precision photonic neural networks. Neural Netw. 2022, 155, 561–573. [CrossRef] [PubMed]

61. Nvidia. Train with Mixed Precision. Available online: https://docs.nvidia.com/deeplearning/performance/mixed-precision-
training/index.html (accessed on 23 September 2023).

62. Yao, Z.; Wu, X.; Li, C.; Youn, S.; He, Y. ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Comprehensive Study
to Low Rank Compensation. arXiv 2023, arXiv:2303.08302.

63. Nvidia. Accelerating Inference in TensorFlow with TensorRT User Guide. Available online: https://docs.nvidia.com/
deeplearning/frameworks/tf-trt-user-guide/index.html (accessed on 21 January 2023).

64. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
65. Nvidia. Contents of the TensorFlow Container. Available online: https://docs.nvidia.com/deeplearning/frameworks/

tensorflow-release-notes/rel_22-03.html (accessed on 17 February 2023).
66. Elson, J.; Douceur, J.J.; Howell, J.; Saul, J. Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization. In

Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS), Alexandria, VI, USA, 31 October–2
November 2007.

67. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

68. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

69. Nvidia. Real Time Means Real Change Nvidia Quadro RTX 4000. Available online: https://www.nvidia.com/content/dam/
en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-4000-data-sheet-us-nvidia-830682-r6-web.pdf
(accessed on 19 November 2022).

70. Nvidia. Compute Capability 7.x. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
compute-capability-7-x (accessed on 10 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/computers12030060
http://dx.doi.org/10.1109/IAICT59002.2023.10205899
https://www.tensorflow.org/model_optimization/guide/quantization/post_training
https://www.tensorflow.org/model_optimization/guide/quantization/post_training
http://dx.doi.org/10.1016/j.neunet.2022.09.015
http://www.ncbi.nlm.nih.gov/pubmed/36191452
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel_22-03.html
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel_22-03.html
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-4000-data-sheet-us-nvidia-830682-r6-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-4000-data-sheet-us-nvidia-830682-r6-web.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-7-x
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-7-x

	Introduction
	First Problem: Training Time
	Second Problem: Inference Latency/Throughput for Real-Time Applications
	Third Problem: Large Memory Usage

	Related Work
	Quantization in Deep Learning
	Quantization to FP16/bfloat16
	Quantization to INT8
	Asymmetric Signed Quantization
	Symmetric Signed Quantization

	Calibration
	Post-Training Dynamic Quantization
	Post-Training Static Quantization
	Quantization Error
	Accuracy Recovery Techniques in Quantization
	Quantization-Aware Training
	Mixed Precision Training

	TensorRT (TRT) and TensorFlow-TRT Frameworks
	Quantization with Different Precision Modes
	Post-Training Quantization in TF-TRT
	INT8 Quantization

	Methodology
	Datasets
	Models
	VGG16
	MobileNet_v1
	ResNet-50

	Hardware
	Metrics

	Results and Discussion
	Training Stage
	Training Time
	Memory Usage

	Inference
	Model Accuracy
	Quantization in Other Deep Learning Frameworks

	Conclusions
	References

