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Abstract— This paper presents a real-time fault detection and 
classification in power electronics dominated grids (PEDG). The 
challenges in detection and localization of faults in active 
distribution networks are addressed by the proposed approach. 
The proposed approach is based on a long short-term memory 
(LSTM) neural network to detect and localize faults based on 
measurements at the point of common coupling of distributed 
energy resources (DERs) within the network. The proposed 
scheme is implementable at the grid-edge in active distribution 
networks for real-time detection, classification, and localization 
using DERs as a grid probing tool to enhance the situational 
awareness of futuristic PEDG. This work includes a detailed 
theoretical analysis and case studies that evaluate the 
performance of the proposed LSTM-based fault detection and 
localization in active distribution networks. A comprehensive 
database is created for the training process, and the network 
operates with optimized hyperparameters. The proposed method 
is examined for a modified IEEE 14-bus network dominated by 
DERs. The results demonstrate promising performance and very 
fast (i.e., within one line cycle) fault detection and localization that 
enhances the situational awareness of the system.  

Index Terms— Modern Power Systems, Distributed Energy 
Systems, Power Electronics Dominated Grid, Microgrid, Long 
Short-term Memory, Artificial Neural Networks, Line-Line 
faults, Anomaly Classification,   

I. INTRODUCTION  

The increasing penetration of distributed energy resources 
(DERs) is transforming power systems into a new concept 
commonly referred to as power electronics dominated grid 
(PEDG) [1]. In this energy paradigm shift, DERs are 
introducing a new active distribution network which has 
various vulnerabilities as well as features that are not fully 
studied and revealed yet. In traditional power systems, various 
types of faults may occur that can cause catastrophic blackouts 
and endanger the safety of power grid devices. In addition to 
these classical faults, PEDG is introducing a new surface of 
faults and anomalies as well. These new surfaces of faults 
include power electronics failures, and cyber layer 
failures/anomalies, etc. Thus, it is crucial for resilient operation 
of PEDG to identify, classify, and localize these types of faults 
at an early stage to quickly clear faults and protect the rest of 
the grid. Detection and localization of these faults in real-time 
is a challenging task that is not fully addressed in literature. 

Detecting faults and anomalies in PEDGs can be done 
through a variety of fashions. Grid operators aim to incorporate 
fault classifications, which provide actionable intelligence to 

mitigate the impact of the fault after it occurs. Two common 
detection techniques are model-based solutions and data-driven 
solutions. Model based solutions find faults based on 
predictions, tracking, and deviations from a model of the 
system and the system itself [2, 3]. This contrasts with data-
driven systems which begin with data collected from a world 
system or a robust digital twin which replicates the system to 
high accuracy [4-8]. Both of these systems could potentially 
classify and identify anomalies within a PEDG as well as 
system faults within the grid [9-12]. While both approaches 
have a potential for successful implementation, data-driven 
schemes are considered for this work. This is because they may 
prove to be more adaptable to changing topologies and specific 
local controllers than model-based solutions which can deviate 
significantly as power system topologies are altered and no 
longer fit the model.   
When considering data-driven approaches for the PEDG, 
artificial intelligence (AI) and neural network (NN) based 
anomaly detection schemes are especially promising. NN 
approaches have been successful in determining changing grid 
conditions, multi-classification of faults and various other 
useful detection and correction schemes in PEDGs[13]. While 
classical algorithms, both simple and complex, are capable of 
detecting faults and anomalies, classification anomalies must 
be created for specific classifications. An algorithm for one 
fault cannot be used for another. NNs have an advantage for 
multi-class distinction for power system faults. A single NN-
based detection network can classify wider ranges of faults 
with potentially unrelated transients. 

When considering NN approaches, the exact type of NN 
used is an important decision. Many types of NN have shown 
potential in power systems, including feedforward NNs [14], 
convolutional NNs [15, 16], and graph NNs [17]. Deep NNs 
are especially useful for processing time series data, as 
instantaneous predictions fall short of making connections 
between subsequent data entries. The long short-term memory 
(LSTM) system is a deep NN topology that has shown 
potential in PEDGs. The LSTM network utilizes update and 
forget gates to “remember” previous data states [18]. This has 
allowed for proper classification in PEDG in [13], and the 
incorporation of additional anomaly classifications would 
further improve the utility of the scheme. 

In PEDGs, detection and correction of anomalies take a 
different form compared to the traditional power system. 
Anomaly detection in PEDGs should include data specific to 
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transients of the power electronics grid, be robust to system 
uncertainties, designed to classify multiple anomalies, and 
detect anomalies in real time. A research gap exists for 
networks capable of addressing all these concerns 
simultaneously. Line-line fault detection techniques for PEDGs 
require unique solutions to address this literature gap. The 
following concerns thus are goals of the proposed network:  

1) fast detection of faults (ideally in less than one line cycle) 
in bilateral power flow grids to allow for fast mitigation and 
improved resiliency,  

2) localization of faults to assist in physical correction and 
fault clearing,  

3) fault detection framework which allows for easy “plug 
and play” into other anomaly classification techniques,  

4) scalability for PEDGs with changing topologies without 
complete reconfiguring of the system when DERs are 
connected to or islanded from grid.  

To meet these concerns, this work proposes a novel data-
driven method for transient and incipient fault location 
detection to integrate in a multi-class neural network detection 
system. The main contribution of this paper is to realize a real-
time AI-based fault detection and localization in active 
distribution network of PEDGs using the DERs and their 
existing sensors as a probing apparatus at the grid-edge. This 
approach aims to make classifications from the voltage and 
current data of point of common coupling (PCC) of DERs. The 
proposed approach can be integrated within the hierarchical 
control structure of PEDG for optimal fault clearing 
mechanism. Thus, the proposed approach enhances the 
situational awareness of the active distribution networks in 
PEDG using the existing infrastructure of DERs. This addresses 
the shortcomings of the existing protection schemes in 
traditional power grid given its real-time feature and 
localization scheme to enhance the situational awareness and 

resiliency of the grid as well as minimizing the power outage in 
post-fault.  

The remainder of this paper discusses the training data 
collection, training process, and verification case studies to 
support the LSTM local classification principle.  

II. DATA COLLECTION AND CLASSIFICATION 

The collection of training data is a fundamental aspect of 
any NN-based approach. Quality training data must 
incorporate both normal and anomalous conditions of the 
system under study. The system in this work is a modified 
IEEE 14 bus system dominated by DERs as demonstrated in 
Fig. 1.  

The data collection process consists of several batches 
simulating a line-to-line fault in one of the 14 lines of the 
PEDG. The training data is collected using a 14-bus system in 
MATLAB/Simulink. By using simulation data, NNs can take 
advantage of the fact that faults and other anomalies can be 
emulated in a simulated environment as a digital twin of real 
network without doing any damage to a physical grid or with 
only relying on limited real-data which may impact the 
performance of NNs. For the training data collected in this 
work a fault is triggered in each of the 14 lines of the system. 
Data is collected for two seconds of simulation time, half of 
which is a no-fault condition, and the other half consists of the 
faulty data. Each bus independently collects its voltage and 
current data for its own LSTM detection network. Thus, while 
each local neural network is training, only data obtained from 
the local bus of the total training data is considered. This 
reduces the simulation time on a per bus basis. All data is 
eventually considered, as a total of 14 local LSTM networks 
are created. The input voltages and current become an input 

 

 

Fig. 1 The modified 14-bus system considered in this work. In this figure, a line-line fault has occurred in Line 7. This results in a Class 1 (Red)
classification in Buses 3 and 4, a Class 2 (Orange) classification in Buses 2 and 5, and a Class 3 (Green) classification in all remaining buses. The
LSTM classification network for Bus 3 is visualized. 



 
 

sequence for the LSTM training process. The training data is 
partitioned into smaller sections for LSTM training, and in this 
work each LSTM training section consists of 500 data points 
sampled at 100kHz. Thus,  the sample size fed into the LSTM 
has a period of 5ms. The total data collected for training is 
divided into three groups: 70% of the data is considered 
training data, 20% is validation data, and 10% is testing data. 

For training of the LSTM based neural network, the PCC 
voltage and current measurements of DERs are used as the 
network inputs. Thus, we are using the DERs sensors readings 
for the primary local controller for the proposed AI-based fault 
location classification. The primary local controller of DER’s 
communicates with the supervisory global controller for 
coordination in PEDG. The voltage and current data from each 
bus is used to detect and classify line-line faults. These data 
are accessible in the supervisory global control layer of PEDG 
for localizing the transient and incipient faults. Once the data 
from local controller has made a prediction concerning a fault, 
the global controller makes the ultimate detection and 
mitigation decisions. Thus, the 14-bus system in this work 
consists of 14 local LSTM networks with one global controller.  
Data is iteratively collected for each bus during a transient fault 
in each of the 14 lines in Fig. 1, as well as during no fault. The 
3-phase current and voltage data are divided into 5ms periods, 
representing the 6 features of the sequential input to the LSTM. 
The data is classified into one of four classes: Class 0: No fault 
in the system, Class 1: Fault in a line connected to the bus, 
Class 2: Fault in a line of an adjacent bus, Class 3: Fault in a 
line more than one bus away from the bus. The description of 
Fig. 1 visualizes these classes for a fault in Line 7.   

III. IMPLEMENTATION OF THE PROPOSED LSTM NETWORK 

The NN used in the study is the LSTM topology. LSTM 
is used to incorporate previous data from the network to make 
sequential estimations of classification. LSTMs, a category of 
recurrent NNs, can incorporate memory of recent events. This 
is opposed to feed forward NNs, which rely solely on 
instantaneous data. This is especially useful in fault detection 
as it allows for interpretation of short-term transients and 
previous operating conditions as opposed to being solely 
reliant on instantaneous values.  

The fundamental LSTM cell is shown in Fig. 2. These 
gates operate via the formulation given by (1)-(4) as first 
presented in [18]. These formulations include the Forget, 
Update, and Output gates. An explanation of each is 
enumerated below. The first gate is the Forget gate F of (1), 

[ 1] ( [ ] [ 1] )F F FC t W X t R h t b    F   (1) 

where X[t] is the NN input sequence and h[t-1] is the hidden 
state. The variable [t] represents the current state, and [t-1] the 
previous state. The Update gate U is defined by (2), 

1 1 1[ ] ( [ ] [ 1] )

tanh( [ ] [ 1] )U U U

C t W X t R h t b

W X t R h t b

     
  

U F


 (2) 

The Update gate is used to update future states and predictions 
based upon new information, combining it with previous 
observations. Via the update gate, the information which 
passed F is thus updated based on new information. 

The final gate is the Output gate O given by (3) which is 
used to determine the hidden state h[t] given by (4), 

( [ ] [ 1] )o o oW X t R h t b   O  (3) 
[ ] tanh( )h t  O U  (4) 

O influences the output of the cell for determining the hidden 
state of the cell. This finally produces the cell outputs C[t] and 
h[t]. With these gates, the “long short-term memory” cell is 
complete. C[t] represents the long-term influence and h[t] the 
short-term influence of the cell’s memory. The LSTM then 
produces four outputs, this is the probability the time series 
data belongs to each of the four classes. 

TABLE. II: LSTM TRAINING ACCURACY 

Bus Validation Accuracy 

1 93.19% 

2 82.50% 

3 79.58% 

4 85.42% 

5 77.22% 

6 78.33% 

7 76.94% 

8 89.86% 

9 81.39% 

10 85.42% 

11 81.25% 

12 91.53% 

13 78.06% 

14 80.00% 

TABLE. I: LSTM TRAINING PARAMETERS 

Parameter Value 

Maximum Epochs 50 

Hidden Layer 1 Size  25 

Hidden Layer 2 Size 10 

Mini Batch size 64 

Validation Frequency 200 

Gradient Threshold 1 

Optimizer Adam 

Data sample length 500 

Dropout Rate 0.1 

  

 
Fig 2. The fundamental LSTM module 



 
 

The training tunes the weights of the LSTM network. The 
weights are defined as: the hidden input weights Wx, the hidden 
state weights Rx, and the biases bx. The subscript x denotes the 
function and gate of the corresponding parameter. Values of 
Wx, Rx, and bx are calculated for each gate. In this paper, the 
structure of each LSTM network is identical, consisting of the 
same 8 layers as detailed in Section IV. The dropout layer has 
a rate of 0.2. 

Once training occurs for the LSTM, the weights and 
biases are tuned to account for the previous data and allow for 
proper categorization. The input size of the NN depends on the 
number of data points considered, and the output is determined 
by the number of classifications needed for the system. 
Additionally, the LSTM system has tunable hyperparameters 
which affect the size of the network, the network accuracy, the 
computational burden of the network, and the time needed to 
train the network. Hyperparameter tuning can impact the 
accuracy and processing power of the LSTM. 

IV. TRAINING PROCESS 

From the collected training data, the LSTM training 
process is designed for high accuracy and fast detection. Each 
bus undergoes a similar training process for classification of 
faults. The data for a specific bus is used to train an LSTM 
network with 6 features and 4 classes. The LSTM network for 
each system has identical hyperparameters. The first layer of 
hidden units in the LSTM has 25 units and the second hidden 
layer has 10 units. These hidden units model the LSTM 
“memory”.  

The selection of the hyperparameters for the LSTM 
affects the accuracy, training time, and computational burden 
of the LSTM. While a comprehensive search for optimal 

hyperparameters is beyond the scope of this work, hidden unit 
size of 50x25 has shown previous success [19], and thus these 
hyperparameters were selected for this work. Other training 
properties such as the number of epochs, sample size, 
validation frequency, etc., were selected to minimize the 
training time without sacrificing accuracy, and are given in 
Table I. 

The system is trained to detect faults from the training 
data. To reduce training time during hyperparameter tuning, 
the data is processed to include a balanced dataset 
approximately 10% of the size of all the collected data. All 
networks trained have an identical layer structure. It consists 
of 8 layers in the following order: 1) Sequence Input, 2) LSTM 
Layer 1, 3) Dropout, 4) LSTM Layer 2, 5) Dropout, 6) Fully 
Connected, 7) Softmax, 8) Classification Output. 

The accuracy of the LSTM of each bus is given in Table 
II. 

The output of the LSTM, Oc, is given by (3). In this work, 
Oc is modified via a moving average filter given by  (5) to 
mitigate false positives,  

 
0

1L
c

c

O t

L 


 P  (5) 

where c is a Class 0, 1, 2, or 3, Pc is the prediction of the Class 
c, L is the number of samples considered in the filter, Oc is the 
LSTM output of class c for the given bus, and t is the 
simulation time. In this work, we have taken L = 500. Pc, a 
number from 0 through 1, is compared to a threshold constant 
Pt to prevent unnecessary mitigation. Pt can be determined for 
each LSTM based on its accuracy, or the same values for each 
local LSTM. In this work, we have taken Pt = 0.51 for all 

Table. III: LSTM Metrics 

 Class 3 Class 2 Class 1 Class 0 

Bus Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score 

1 0.995 0.995 0.995 0.980 1.000 0.990 0.775 0.886 0.827 0.775 0.886 0.827 

2 0.854 0.980 0.913 0.892 0.917 0.904 0.450 0.439 0.444 0.450 0.439 0.444 

3 0.854 0.983 0.914 0.660 0.532 0.589 0.900 0.857 0.878 0.900 0.857 0.878 

4 0.867 0.989 0.924 0.611 0.468 0.530 0.771 0.841 0.804 0.771 0.841 0.804 

5 0.872 0.926 0.898 0.600 0.646 0.622 0.653 0.914 0.762 0.653 0.914 0.762 

6 0.791 0.923 0.852 0.542 0.456 0.495 0.947 1.000 0.973 0.947 1.000 0.973 

7 0.748 0.932 0.830 0.913 0.457 0.609 0.588 0.500 0.540 0.588 0.500 0.540 

8 0.933 0.915 0.924 0.955 1.000 0.977 1.000 0.833 0.909 1.000 0.833 0.909 

9 0.831 0.972 0.896 0.895 0.596 0.716 0.936 0.957 0.946 0.936 0.957 0.946 

10 0.798 0.962 0.872 1.000 0.522 0.686 0.771 0.871 0.818 0.771 0.871 0.818 

11 0.761 0.950 0.845 0.914 0.500 0.646 0.627 0.865 0.727 0.627 0.865 0.727 

12 0.883 0.982 0.930 1.000 1.000 1.000 0.956 0.977 0.966 0.956 0.977 0.966 

13 0.812 0.858 0.834 0.804 0.976 0.882 0.348 0.235 0.281 0.348 0.235 0.281 

14 0.816 0.863 0.839 0.545 0.387 0.453 0.971 0.895 0.931 0.775 0.782 0.778 

The data is classified into one of the four classes: Class 0 denotes no fault in the system; Class 1 denotes a fault in a line connected to the bus; Class 2 
denotes a fault in a line of an adjacent bus; and Class 3 denotes a fault in a line more than one bus away from the bus. 



 
 

LSTMs. When Pc > Pt, the local data for LSTM alerts the 
global controller for localization of transient and incipient 
faults. The global controller utilizes LSTM predictions from 
all 14-buses to make the final classification. In this work, the 
global controller triggers a final classification when it receives 
a Class 1 detection from adjoined buses. 

V. RESULTS AND DISCUSSION 

A. Testing Data Verification 

With the LSTM network fully trained, verification of the 
network is necessary to ensure it is fully capable of detecting 
faults in the IEEE 14 bus system. The first verification is done 
through the testing data gathered during the data collection 
process. During training, the validation data is used to create 
the validation accuracy seen in Table II. However, in order to 
ensure that the LSTM classification system can properly 
classify data beyond that employed during training, the testing 
data must be utilized. The first verification of the proposed 
LSTM model is demonstrated in the confusion matrix shown 
in Fig. 3.  The confusion matrix shows how the trained LSTM 
predicts fault classes for a bus with the testing data. It 
compares the predicted class on the x-axis and the true class 
on the y-axis. The confusion matrix exhaustively shows the 
number of classifications for all possible scenarios; 16 or 24 
scenarios are possible because of the four classes. Fig. 3 shows 
the confusion matrix for the Bus 1 local LSTM classification. 
To conserve space, the confusion matrices of other 13 buses 
are not shown. 

In addition to the confusion matrix, all 14 local LSTM 
networks corresponding to 14 buses are verified using the 
precision, recall, and F1 score of each bus. These metrics are 
tabulated for each class for the 14 buses as shown in Table III. 
The precision metric highlights the ability of the network to 
only make correct classifications, the recall metric highlights 
the network’s ability to predict all occurrences of a fault, and 
the F1 score is a combination of both precision and recall 
metrics as given in (6). 

1

2 precision recall
F score

precision recall

 



 (6) 

The F1 score can range from 0 to 1, where scores closer to 1 
are superior. Thus, as seen from the metrics in Table III, the 
local LSTM method exhibits great performance in terms of all 
the metrics across nearly all buses and classes.  

B. Case Study Verification 

A verification case study is performed in 
MATLAB/Simulink that validates the proposed LSTM-based 
fault location detection system and further validates its 
feasibility in a PEDG using DERs as grid-probing tool. The 
verification is completed using the 14-bus system displayed in 
Fig. 1. In this study, a fault in Phase A-B in Line 1 of the 
system occurs at 11 s. The local LSTM of Bus 1 operates 
during the study, as real time voltage and current data is 
provided to the detection network. During each sampling 

instance, the LSTM predicts the probability of each of the four 
fault classes. The prediction of each class is regulated by the 
supervisory controller to decide when a fault has occurred. 

The supervisory controller in this study takes the moving 
average of each prediction, as described by (5). For 
determining a fault in this case study, the output prediction P1 
for Bus 1 is pivotal. P1 , the output of the moving average filter 
of Bus 1, is displayed in Fig. 4. After t=11s, the local detection 
LSTM predicts with higher certainty that a fault has occurred 
at Bus 1. Finally, the LSTM prediction P1 exceeds the 0.51 
trigger threshold. This trigger occurs at 11.49 ms after the fault. 
Thus, the trigger meets the goal of detection within a 60 Hz 
line cycle of the fault, where the deadline for fault 
detection/triggering is  16.67ms. The local detection network 
communicates a fault trigger to the supervisory controller, 
which instantaneously trips breakers in Line 1. It is to be noted 

 

 
Fig. 4 Prediction of a Fault in a line connected to Bus 1. 

 
Fig. 5 Bus 1 voltage a) with the proposed LSTM and fault mitigation 
mechanism, b) without the proposed fault detection and mitigation 
system. 

 

 

Fig. 3 Confusion matrix of the LSTM detection of faults in Bus 1. The 
diagonals indicate correct predictions of the training data, while off-
diagonals are incorrect predictions 



 
 

that we can reduce the sample window size of the moving 
average filter in (5), and further improve the timeliness of the 
proposed fault trigger scheme at the expense of somewhat 
increased false positive rates.  

The mitigation effects are demonstrated in Fig. 5. Here, 
the timescale is expanded to display the voltage at Bus 1 with 
and without the proposed LSTM detection. Fig. 5a 
demonstrates the impact of the detection system, as the 
proposed real-time detection shows no significant impact on 
the system one line cycle after the fault. Fig. 5b demonstrates 
the system without the local detection network. Without the 
proposed network, the system remains unbalanced which 
ultimately will trigger the protection relays at various 
locations. As the supervisory controller is not able to quickly 
locate where the fault occurred without a fault detection and 
localization system, the fault can introduce demand-supply 
stability challenges due to the loss of DERs generation without 
identifying the fault location to minimize the power outage. 
Thus, the simulated case study verifies that the proposed 
LSTM network has accurately been able to determine fault 
detection and localization which informs the supervisory 
controller of exactly where the fault occurred. This enables the 
supervisory controller to make the best mitigation decision 
possible to the entire PEDG. 

VI. CONCLUSION 

This paper presents a real-time AI-based fault detection 
and localization technique in PEDG. The training process, data 
collection, network testing verification, and a verification case 
study is provided for a real-time location detection of faults in 
a PEDG. The training data is collected from a 
MATLAB/Simulink model of an IEEE 14 bus system 
specifically tuned to be a realistic representation of a PEDG. 
The proposed LSTM network is trained for each bus in an 
IEEE 14-bus grid. The local fault detection system operates 
with the three-phase voltage and current data obtained at a 
local bus in a PEDG. The voltage and current measurements 
are inputs to an LSTM network, which predicts one of the four 
identified classes. Each class represents the fault status of the 
bus as a part of a larger system: three classes indicate a fault 
exists in the system and predicts the distance between the bus 
and the fault, while the fourth class indicates there is no fault 
in the PEDG. The process of training the network from this 
data is detailed. After the training of each local LSTM, the 
network is verified through two separate processes. First, the 
testing data verifies the precision and recall of each network 
and each class. Second, a case study verifies the online 
operation of the detection network by creating a fault in Line 
1 of the PEDG. The case study results reveal that the local 
LSTM at Bus 1 can detect the fault and quickly trigger breakers 
in less than one line-cycle. Thus, the local LSTM line-line fault 
detection system is capable of detecting faults and can be 
trusted for operating on individual buses. It communicates 
fault triggers to a supervisory controller for proper mitigation 

at each bus of a PEDG. The local controller scheme improves 
scalability as it accommodates changes in the number of DERs 
in a PEDG.  
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