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Abstract —The need for application specific design of multicore/manycore processing platforms is evident with computing systems
finding use in diverse application domains. In order to tailor multicore/manycore processors for application specific requirements, a
multitude of processor design parameters have to be tuned accordingly which involves rigorous and extensive design space exploration
over large search spaces. In this paper, we propose an efficient methodology for design space exploration. We evaluate our
methodology over two search spaces small and large, using a cycle-accurate simulator (ESESC) and a standard set of PARSEC and
SPLASH-2 benchmarks. For the smaller design space, we compare results obtained from our design space exploration methodology
with results obtained from fully exhaustive search. The results show that solution quality obtained from our methodology are within
1.35% - 3.69% of the results obtained from fully exhaustive search while only exploring 2.74% - 3% of the design space. For larger
design space, we compare solution quality of different results obtained by varying the number of tunable processor design parameters
included in the exhaustive search phase of our methodology. The results show that including more number of tunable parameters in the
exhaustive search phase of our methodology greatly improves solution quality.

Index Terms —multicore/manycore processors, processor design parameters, design space exploration, cycle-accurate simulator
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1 INTRODUCTION AND MOTIVATION

COMPUTING technology is used in several diverse
application domains each having different application-

specific requirements. These requirements can seldom be
efficiently met by generically designed computing systems.
So, for different application domains, application-specific
systems have to be designed such that domain-specific
system requirements are met, while staying within the
boundaries of feasible design. The design of application-
specific multicore/manycore processors involves tuning of
settings for processor design parameters to find a nearly-
optimal design configuration which best meets application-
specific requirements. There are two main challenges that
need to be addressed in the process of tuning of settings
for processor design parameters – efficiently exploring the
design space, and, satisfying multiple (possibly conflicting)
design metrics.

An efficient design space exploration methodology is
a must because of constraints of time and resources.
Even with the processing and memory capabilities of
current high-end machines, simulating all the possible
configurations in a large design space is not temporally
feasible. Design time is an important factor that needs to
be considered in development of processors because the
longer the design time of the processor, the longer the time-
to-market for it will be. The longer time-to-market can result
in significant revenue loss for the vendor if the product does
not enter the market window (i.e., period during which the
product would have highest sales) on-time [1].

The design space exploration methodology must also
be able to find solutions when multiple conflicting
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design metrics [2] need to be satisfied. When considering
optimization of multiple conflicting metrics, it is not
possible to have global optimal solution (i.e., design
configuration) in which all of the conflicting metrics have
optimal values. Instead, the best solution is the a trade-
off that can be obtained between the given conflicting
metrics. The design problem then can be modelled as an
Optimal Production Frontier problem also known as Pareto
Efficiency [3] problem. In such a problem, several trade-off
solutions are obtained where each solution favors one of
the conflicting metrics. The choice of solution from the set
of trade-offs can be made based on the application-specific
requirement of the design.

In this paper, we propose a methodology for
multicore/manycore processor parameter optimization,
which partially explores the design space to determine
a parameter configuration which gives the best trade-
off between the specified application requirements. The
approach used in this paper, utilizes a combination of
exhaustive, greedy and one-shot (initial tunable parameter
settings selection) searches to efficiently perform design
space exploration. Our methodology can efficiently prune
the design space, and can accommodate multiple conflicting
design metrics in the optimization process. We extensively
tested our methodology on a cycle-accurate simulator,
ESESC (Enhanced Super ESCalar), using a large set of multi-
threaded benchmarks, PARSEC (Princeton Application
Repository for Shared-Memory Computers) and SPLASH-2
(Stanford ParalleL Applications for SHared memory, version
2).

The main contributions of our paper are:

• We propose a methodology for multicore parameter
tuning that combines three different exploration
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methods, exhaustive searching, greedy searching and
one-shot searching, to prune the design space to find
the best settings for tunable design parameters to
meet particular application requirements.

• We present an initial optimization algorithm based
on one-shot searching that can determine initial
settings for each tunable parameter to within 51.26%
of the best setting for that parameter.

• We describe an intelligent set partitioning algorithm,
which uses results from the initial one-shot
optimization algorithm, to group parameters based
on the significance they have towards the targeted
application-specific design requirements. We use
three significance groups in our methodology one for
each of the exploration methods, exhaustive, greedy
and one-shot searching.

• Our intelligent set partitioning algorithm includes an
exhaustive search threshold parameter, which allows
the designer to control design time by manipulating
the number of design parameters considered in the
exhaustive search.

• We propose exhaustive and greedy search
algorithms, which improve on the initial settings
obtained by the initial optimization process, to yield
best settings to within 1.35% - 3.69% of the best
settings obtained from fully exhaustive search of the
design space.

• We compare the effects of varying the exhaustive
search threshold parameter on the quality of
solutions obtained from our methodology.

The remainder of the paper is organized as follows.
Section 2 gives a review of related work. Section 3
describes our methodology for parameter optimization.
Section 4 presents the algorithms leveraged by our
parameter optimization methodology. The experimental
setup describing the simulator and benchmarks used to test
the algorithm is presented in Section 5. Section 6 discusses
the results. Finally, Section 7 concludes our study along with
a brief description of future research directions.

2 RELATED WORK

There has been work done in literature relevant to processor
parameter optimization [4], [5], [6] and several innovative
optimization methodologies have been proposed. Several
research articles are available in which authors have used
design space exploration algorithms such as exhaustive
search, greedy search, genetic algorithms, evolutionary
algorithms etc. We present a brief analysis of the outcomes
obtained by some authors from these different approaches.

A fully exhaustive search of the design space is
the ideal method of design space exploration as it will
certainly lead to the best design configuration, but, the
overhead involved in performing such a search limits
its usability. Much research has been carried out to
devise methods of narrowing the scope of exhaustive
search to form an equally effective partial exhaustive
search algorithm. One of such methods was proposed by
Givargis et al. [7], in their system PLATUNE (PLATform
TUNEr), used to simulate parameterized SoCs (System
on Chip) for embedded applications. Their algorithm was

separated into two phases. In the first phase, they searched
through the design space to find strongly interdependent
parameters and grouped them into clusters. Exhaustive
searches were carried out on each cluster separately to
determine the pareto-optimal configuration for each cluster.
These configurations were termed locally pareto-optimal
configurations. In the second phase, to extend the search
over the complete design space to find globally pareto-
optimal configurations, exhaustive search was carried out
only on the locally pareto-optimal configurations obtained
from each cluster. Their system could prune a design space
as large as 1014 configurations, but took on order of 1-3 days
for completing the search.

Palesi et al. [8], improved on the work presented
by Givargis et al. [7]. They argued that the system
PLATUNE was feasible only when the number of strongly
interdependent parameters in each cluster was small. This is
true because if too many parameters are clustered together,
then, the partial search-space of each cluster will be large
enough to make exhaustive search infeasible. To overcome
this, Palesi et al. introduced a new threshold value in
their exploration algorithm which distinguished between
clusters based on the size of their partial search-space.
If the size of the partial search-space for a cluster was
smaller than the threshold value, then, exhaustive search
was used. However, if the size of the partial design space
was greater than the threshold value, then, instead of using
an exhaustive search over the cluster, a genetic exploration
algorithm was used. The same distinction was extended
for searching through the entire design space. Through
this improvement, they were able to achieve 80% reduction
in simulation time while still remaining within 1% of the
results obtained from exhaustive search.

Genetic algorithms were also used in the system
MULTICUBE (Multi-objective Design Space Exploration
of MultiProcessor-SoC Architectures for Embedded
Multimedia Applications), by Silvano et al. [9]. In this
system, they defined an automatic design space exploration
algorithm that could swiftly present an approximate
pareto-front to the system designer to help in deciding
which design configuration was best suited for a particular
application scope. The exploration algorithms used in their
work range from different variants of genetic algorithms
to evolutionary algorithm and simulated annealing. In
their work, they presented a comparison of these different
exploration algorithms based on how well they converge
towards the optimal design configuration based on the
percentage of design space explored. They argued that the
degree of closeness to the best setting for each tunable
parameter in a design space is strictly related to the number
of evaluations that the system designer can afford to
make. In other words, the degree of closeness to the best
configuration is directly proportional to the percentage of
design space explored.

Munir et al. [10] used a greedy algorithm to overcome
the overhead of exhaustive search, in their paper on
dynamic optimization of wireless sensor networks. Their
algorithm was separated in two phases. In the first phase,
a one-shot search algorithm was employed to find the best
initial values for each of the tunable parameters considered.
The search was limited to the first and last settings within
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the set of possible settings for each parameter. Once the
best initial values for all the parameters were determined,
the parameters were ordered based on the significance
that each parameter has towards the targeted application-
specific requirement. In the second phase, a greedy search
algorithm was used which worked off of the best initial
values determined in the first phase. The greedy search,
progressed through the list of possible settings for each
parameter, starting at the best initial value. If the new setting
for a parameter, yielded a better configuration than the
previous setting for that parameter, then, the search was
continued. But, if the new setting, yielded a configuration
that is worse than the previous configuration, then, the
search algorithm was terminated for that parameter and the
same search algorithm was started for the next parameter.
In their paper, they compared the performance of their
algorithm against the performance of simulated annealing
exploration algorithm. They concluded that their algorithm
converged to within 8% of the best configuration while only
exploring 1% of the design space as compared the simulated
annealing exploration algorithm that explored 55% of the
design space to get within the same range of convergence.

Some of the other widely used approaches to prune
design space include the use of machine learning algorithms
and statistical simulation. Guo et al. [11] used machine
learning in their design space exploration algorithm. In
their system, a training set was formed using a small
number of design configurations. The training set was
simulated and their simulation results were used to generate
a predictive model. Once an accurate predictive model was
obtained it was used to predict the simulation results of
design configurations not in the training set. This greatly
reduced exploration time as simulations were only carried
out on the small training set. Genbrugge et al. [12] used
statistical simulation in their design space exploration
algorithm. They reduced exploration time by reducing the
size of their simulations. They achieved this by generating
synthetic trace of a benchmark program’s execution by
using statistical profiling. The synthetic trace had the same
execution characteristics as the benchmark program but
with far smaller simulation time.

In this paper, we improve on the work carried out by
Munir et al. [10]. We use a similar approach to design space
exploration but with an addition of two new phases - a
set partition phase and an exhaustive search phase. With
the addition of the exhaustive search phase we intend to
increase the degree of closeness to the optimal solution by
exploring a larger portion of the design space, as argued by
Silvano et al. [9]. The limit on the number of configurations
considered in the exhaustive search is determined by the set-
partitioning phase in which we use the threshold concept
presented by Palesi et al. [8].

3 PARAMETER OPTIMIZATION METHODOLOGY

3.1 Overview

Figure 1 depicts our parameter optimization methodology.
The list of tunable design parameters and the set of settings
for each of these parameters is provided by the system
designer. The system designer also specifies the list of test
benchmarks to the system. Each test benchmark provides

a unique workload to the system and the system reports
unique results for each benchmark. All the provided values
are used by the initial parameter setting selection module to
select the initial (one-shot) configuration. The initial (one-
shot) configurations are passed to the simulator module.
The simulator module consists of a cycle accurate multicore
architecture simulator. The simulator simulates the initial
(one-shot) configurations and the obtained simulation
results are normalized and combined to form an objective
function using weights for different metrics specified by the
system designer. The set of objective function values for
each initial (one-shot) configuration is then forwarded to
the tunable parameter significance ordered set module.

In the tunable parameter significance ordered set module, the
significance of each of the tunable parameters is determined.
The significance is calculated using the values of the
objective function obtained from simulating the initial (one-
shot) configurations. The parameters are then arranged in
descending order based on their significance.

The set of ordered parameters is partitioned into three
subsets. The subset with highly significant parameters
is separated as the exhaustive search set, the subset
with slightly less significant parameters is separated as
the greedy search set followed by the subset with least
significant parameters which is separated as the one-shot
search set. The partition is carried out on the basis of an
exhaustive search threshold factor T which is used to limit
the number of parameters included in the exhaustive search
set. This factor is provided by the system designer. The
exhaustive and greedy search sets are then forwarded to the
simulator module for use in exhaustive and greedy search
steps. No further operations are carried out on the one-
shot search set and the best settings obtained from the initial
parameter setting selection module are retained.

Next, exhaustive search is carried out on the exhaustive
search set by the exhaustive configuration tuning module.
Although exhaustive search is a resource-intensive process,
we have included this search method because it will
decrease the likelihood of the solution presented by our
methodology from converging to a local best instead of
a global best. In this step, each possible combination of
parameters in the exhaustive search set is used to generate
configuration test points. For the parameters which are
not in the exhaustive search set, the best settings available
from the initial parameter setting selection module are used.
The objective function value for each of the exhaustive
configuration test points is evaluated and the configuration
yielding the smallest value is returned as the best setting for
the exhaustive configuration.

The best settings reported by exhaustive configuration
tuning module are then passed on to the greedy configuration
tuning module. In this module, the parameters in the greedy
search set are optimized. New configuration test points are
generated by this module using parameter settings picked
by a greedy algorithm for the parameters in the greedy
search set. The best settings obtained from exhaustive
search and the best settings obtained from initial (one-shot)
optimization are used for the parameters not in the greedy
search set. The greedy search algorithm operates on one
parameter at a time and optimizes its settings as long as the
objective function value improves for new test points. When
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Fig. 1. Parameter Optimization Methodology.

the objective function begins to degrade, the greedy search
algorithm is terminated for the current parameter and the
next parameter in greedy search set is optimized. Once all
the parameters in the greedy search set are optimized, the
best settings for all the tunable parameters are returned to
the system designer.

3.2 Defining the Design Space

Consider n number of tunable parameters are available to
describe the design of a multicore/manycore processor. Let
P be the list of these tunable parameters defined as the
following set:

P = {P1, P2, P3, · · · , Pn} (1)

Each tunable parameter Pi [where i ∈ {1, 2 · · ·n}] in the list
P is the set of possible settings for ith parameter. Let L be
the set containing the size of the set of possible settings for
each parameter in list P .

L = {L1, L2, L3, · · · , Ln} (2)

such that,
Li = |Pi| ∀ i ∈ 1, 2, · · · , n (3)

where |Pi| is the cardinal value of set Pi.
So, each parameter setting set Pi in the list P is defined

as follows:

Pi = {Pi1, Pi2, Pi3, · · · , PiLi
} ∀ i ∈ {1, 2, · · · , n} (4)

The values in the set Pi are arranged in ascending order.
The state space for design space exploration is the

collection of all the possible configurations that can be
obtained using the n parameters.

S = P1 × P2 × P3 × · · · × Pn (5)

Here, × represents the Cartesian product of lists in P .
Throughout this paper, we use the term S to denote the state
space composed of all n tunable parameters. To maintain
generality, when referring to a state space composed of a
tunable parameters where a < n, we attach a subscript to
the term S.

Sa = P1 × P2 × P3 × · · · × Pa ∀ a < n (6)

We note that the state space of a tunable parameters does
not constitute a complete design configuration and is only
used as an intermediate when defining our methodology.

We also reserve the use of × operator in the following
manner:

Sa = Sa × Pi ∀ i ∈ {1, 2, · · · , n} (7)

This represents the extension of the state space Sa to include
one new set of parameter settings Pi from the list P . This
operation increases the number of tunable parameters in
state space a by one.

When referring to a design configuration that belongs to
the state space S, we use the term s. We attach subscripts
to s to refer to specific design configurations. For example,
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a state sf that consists of the first setting of each tunable
parameter can be written as:

sf = (P11, P21, P31, · · · , Pn1) (8)

Similarly, to denote an incomplete/partial design
configuration of a tunable parameters we use the term
δsa.

3.3 Benchmarks

Each of the configurations, selected from the state space S
by our algorithm, is tested on m number of test benchmarks.
The design metrics for each simulated configuration is
collected separately for each benchmark.

3.4 Objective Function

In our algorithm, design configurations are compared with
each other based on their objective functions. The objective
function of a design configuration is the weighted sum of
the design metrics obtained after simulating that design
configuration. Let o be the number of design metrics and
V be the set of values of design metrics which are obtained
from the simulation.

V k
s = {V k

s1, V
k
s2, V

k
s3, · · · , V

k
so} ∀ k = 1, 2, · · · ,m (9)

Let w be the set of weights for the design metrics based on
the requirements of the targeted application. These weights
are set by the system designer.

w = {w1, w2, w3, · · · , wo} (10)

such that,
0 ≤ wl ≤ 1 ∀ l = 1, 2, · · · , o (11)

and, ∑
wl = 1 ∀ l = 1, 2, · · · , o (12)

The objective function F of a design configuration s for a
test benchmark k is defined as follows:

Fk
s =

∑
wlV

k
sl ∀ l = 1, 2, · · · , o (13)

The optimization problem, considered in this paper, is
to minimize the value of the objective function F . The
design metrics are chosen such that the minimization of
their values is the favourable design choice. For example,
when considering the performance metric, the design
goal is to maximize performance. To model this into the
objective function which we use execution time to measure
performance. Minimizing execution time would fit with
minimizing the objective function while still modelling the
design goal of maximizing performance. The optimization
problem for each test benchmark k is defined as follows:

min. F k
s

s.t. s ∈ S
(14)

4 ALGORITHM FOR PARAMETER OPTIMIZATION

METHODOLOGY

In this section, we describe the four distinct phases that
comprises our design space exploration methodology. We
also compute the overall computational complexity of our
methodology using the complexities of each phase.

4.1 Phase I : Initial One-Shot Optimization and
Parameter Significance

In this phase, parameter tuning is carried out using one-
shot optimization process. This process is based on single
factor analysis which is a common approach used in design
space exploration. Single factor analysis based approach
is suitable for independent on/off-type parameters which
have two options for each parameter, a zero value option
and a non-zero value option [13]. But, from our experiment
we found that when the results from single factor analysis
are extended with other search algorithms (e.g. exhaustive
and greedy search in our methodology) it can form an
effective heuristic. The process operates on the list of
parameters P such that the parameters are tuned one at a
time; the settings of the current parameter are varied while
the settings of all other parameters are unchanged. While
operating on the current parameter, objective functions
are calculated for design configurations that use the first
and last settings in the set of parameter settings for the
current parameter. All the other parameters in these design
configurations are arbitrarily set to the first setting in their
corresponding set of parameter settings. Note that each
set of parameters in the list of parameters P is provided
arranged in ascending order.

Algorithm 1: Initial One-Shot Optimization and
Parameter Significance

Input: P - List of Tunable Parameters
Output: B - Set of Best Settings; D - Significance of

Parameters with respect to Objective Function

1 for i← 1 to n do
2 sf = {Pi1}
3 sl = {PiL[i]}
4 for j ← 1 to n do
5 if i 6= j then
6 sf = sf ∪ {Pj1}
7 sl = sl ∪ {Pj1}
8 end
9 end

10 for k← 1 to m do

11 Explore kth benchmark using configuration sf
12 Calculate Fk

sf

13 Explore kth benchmark using configuration sl
14 Calculate Fk

sl

15 Dk
i = Fk

l −F
k
f

16 if Dk
i > 0 then

17 Bk
i = Pi1

18 else

19 Bk
i = PiL[i]

20 end
21 end
22 end

Algorithm 1 presents the steps in selecting initial
parameter setting of each tunable parameter, and
determining the significance of each tunable parameter
to the objective function. In this algorithm, two design
configurations, sf and sl, are used where sf corresponds
to the design configuration with the first setting and sl
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corresponds to the design configuration with the last setting
for the current parameter being processed. The objective
functions for all the test benchmarks are calculated by
running simulations on these design configurations. The
objective functions Fsf and Fsl , which corresponds to
design configurations sf and sl, respectively, are compared
with each other. The comparison is made on the basis of
difference of magnitude of Fsf from Fsl . This difference is
stored in a set of parameter significance D (line 15). The
magnitude of the difference determines the significance of
parameters with respect to objective function, that is, greater
the magnitude Dk

i , i ∈ {1, 2, 3, . . . , n}, the greater the
significance of parameter Pi with respect to the objective
function. Judging by whether the difference is positive or
negative, the best setting for the current parameter is chosen
as either the first setting or the last setting. The best settings
for the parameters are stored in the set of best settings Bk

i

(lines 17 and 19).

4.2 Phase II : Set Partitioning

Algorithm 2: Set Partitioning

Input: D - Significance of Parameters towards
Objective Function; I - Index Set; T -
Exhaustive Search Threshold Factor

Output: E - Set of Parameters for Exhaustive Search; G
- Set of Parameters for Greedy Search

1 E = ∅ and G = ∅
2 for k← 1 to m do

3 sortDescending (| Dk |)- s.t. index information of
the sorted values is preserved in Ik

4 sort(P k) and sort(Lk) w.r.t. index information in Ik

5 numE = 1 and i = 1
6 while numE ≤ T do

7 numE = numE × Lk
i

8 if numE ≤ T then

9 Ek = Ek ∪ {Pi}
10 i = i+ 1
11 else
12 break
13 end
14 end

15 numG = ceil((|P k| − |Ek|) / 2)
16 while numG > 0 do

17 Gk = Gk ∪ {P k
i }

18 numG = numG − 1
19 i = i+ 1
20 end
21 end

Algorithm 2 presents the steps involved in partitioning
the list of parameters into different sets for performing
the exhaustive and greedy searches. The algorithm starts
out by sorting the set of parameter significance values,
| Dk |, in descending order of magnitude such that the index
information of the sorted values is preserved in Ik (for the
kth benchmark; k ∈ {1, 2, . . . ,m}) (line 3). For example, if
the fifth entry Dk

5 has the greatest value, D5 will become the
first entry after sortDescending(| Dk |) function and first

entry of the set Ik will be 5, that is, Ik1 = 5. The index
information in Ik is then used by the sort(P k) and sort (Lk)
functions to order the list of parameter names and set sizes.
This results in an arrangement of parameters in which the
parameters with higher significance are placed towards the
start of the set and the parameters with lower significance
are placed towards the end of the set. The parameters are
then sorted into three ordered sets. The parameters with
the highest significance in the sorted parameters list are
separated into the exhaustive search set E . The number
of parameters considered for the exhaustive search set
depends upon the exhaustive search threshold value T ,
provided by the system designer. The threshold value T
limits the size of the partial search space of the exhaustive
search set, numE (line 6).

When the exhaustive search set is separated out, the
remaining parameters in the sorted parameters list are
halved (line 15). The upper half of remaining parameters
in the sorted parameters list are separated into the greedy
search set, G, and the lower half is separated into one-shot
search set. We observe empirically that selecting the upper
half, ceil((|P | − |Ek|)/2), provides efficient design space
exploration without significantly compromising the solution
(i.e., best design configuration) quality. The parameters
in the one-shot search set are not explored further and
are tuned using the best settings determined for them in
Algorithm 1.

4.3 Phase III : Exhaustive Search Optimization

In the third phase of our methodology, best settings for the
parameters in the exhaustive search set E are determined.
The steps involved in this phase are described in Algorithm
3. First, the settings for the parameters that are not included
in the set E are chosen (line 7). The settings for these
parameters are assigned using the set of best settings Bk

i

obtained from the initial (one-shot) optimization process
in Algorithm 1. These settings are stored in the set δs

E
′ .

Following this, a partial state space SE for exhaustive
search set E is formed (line 12). Next, each of the possible
configurations of parameter settings, δsEj (line 16), in the
state-space of set E , SE , is combined with the set δsE′ (line
17) to form a complete simulatable design configuration sE .
The objective function, FsE , is determined by simulating
sE , and this value is compared with the best objective
function, Fsb , which holds the smallest value objective
function encountered thus far in the search process. When
a design configuration results in an objective function that
has a value less than Fsb (line 20), then, Fsb is changed to
the new minimum value and the set of best settings B is
updated with the corresponding design configuration. This
exhaustive search optimization process is carried out for
each of the test benchmarks used in the simulation process.

4.4 Phase IV : Greedy Search Optimization

Algorithm 4, describes the final phase of our methodology
which involves optimization of the parameters in greedy
search set G. For each parameter in the set G, the significance
of that parameter is checked to determined whether the
value is positive or negative. A positive value indicates
that the first setting for that parameter yields a smaller
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Algorithm 3: Exhaustive Search

Input: P - List of Tunable Parameters; B - Set of Best
Settings for Oneshot Search; E - List of
Parameters for Exhaustive Search

Output: B - List of Best Settings for Oneshot and
Exhaustive Search

1 sE = ∅
2 δsE = ∅ and δsE′ = ∅
3 for k← 1 to m do

4 Fk
sb

=∞
5 for i← 1 to n do

6 if Pi /∈ Ek then

7 δsk
E
′ = δsk

E
′ ∪ {Bk

i }
8 end
9 end

10 for i← 1 to n do

11 if Pi ∈ Ek then

12 Sk
E = Sk

E × Pi

13 end
14 end

15 for j ← 1 to |Sk
E | do

16 δskEj is a partial configuration in state space Sk
E

17 skE = δskEj ∪ δsk
E
′

18 Explore kth benchmark using configuration skE
19 Calculate Fk

E

20 if Fk
sE

< Fk
sb

then

21 Fk
sb

= Fk
sE

22 Bk = skE
23 end
24 end
25 end

objective function as compared to the last setting. A negative
value indicates the exact opposite; the last setting for that
parameter yields a smaller objective function as compared
to the first setting. It is assumed that the setting that yields
the smallest objective function lies closer towards the setting
that yields the smallest objective function in the initial (one-
shot) optimization process. So, to ensure that the search
process starts from the setting that yielded the smallest
objective function in the initial (one-shot) optimization
process, the set of parameter settings is either sorted in
descending order or left unchanged in default ascending
order (line 8). In the search process of each parameter, all
the parameters except for the parameter currently being
processed is assigned settings using the set of best settings
Bk

i (line 12). The parameters in the exhaustive search set
E are set to the best settings obtained from the exhaustive
search process. The non-current parameters in set G are
assigned settings in one of two ways. If the non-current
parameter has already been processed by the greedy search
optimization process, then, the parameter is assigned the
best setting obtained from that process. If the non-current
parameter has not been processed yet, then, the parameter is
assigned the best setting obtained from the initial (one-shot)
optimization process. The parameters that are not included
in either of the sets E or G are assigned the best settings
obtained from the initial one-shot optimization process.
These settings are collected in a partial design configuration

Algorithm 4: Greedy Search

Input: P - List of Tunable Parameters, D -
Significance of Parameters towards Objective
Function, B - Set of Best Settings for Oneshot
and Exhaustive Search, E - Set of Parameters
for Exhaustive Search, G - Set of Parameters for
Greedy Search

Output: B - Complete set of Best Settings

1 sG = ∅
2 δs

G
′ = ∅

3 GP = ∅
4 for k = 1 to m do

5 Fk
sb

=∞
6 for i← 1 to n do

7 if Pi ∈ Gk then

8 if Dk
i < 0 then

9 GP = sortDescending (Pi)
10 end
11 for j ← 1 to n do
12 if Pj 6= GP then

13 δsk
G

′

P

= δsk
G

′

P

∪ {Bk
j }

14 end
15 end
16 for l← 1 to Li do

17 skG = δsk
GP

′ ∪ {GPl}

18 Explore kth benchmark using
configuration skG

19 Calculate Fk
sG

20 if Fk
sG

< Fk
sb

then

21 Fk
sb

= Fk
sG

22 Bk
i = GPj

23 else
24 break
25 end
26 end
27 end
28 end
29 end

set δs
GP

′ .

The set δs
GP

′ then is combined with the settings
for the current parameter being processed to form the
complete simulatable design configuration sG (line 17).
This configuration is simulated and the resulting objective
function, FsG , is compared with the best objective function
Fsb , which holds the smallest value objective function
encountered thus far in the search process. Similar to the
exhaustive search process, when a design configuration
results in an objective function that has a value less than
Fsb (line 20), then, Fsb is changed to the new minimum
value and the set of best settings Bk

i is updated with
the corresponding design configuration. However, when
the search process encounters a design configuration that
results in an objective function that has a value greater than
Fsb , then, the search process for the current parameter is
terminated and the next parameter in the parameter list G is
explored.
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4.5 Computational Complexity

The computational complexity for our design space
exploration methodology is O(mT + mnLmaxlogLmax).
This term is comprised of the initial one-shot parameter
optimization and parameter significance (Algorithm 1)
O(mn), set partitioning (Algorithm 2) O(mnlogn)
(sorting contributes the nlogn factor), exhaustive search
(Algorithm 3) O(mT ), and greedy search (Algorithm 4)
O(mnLmaxlogLmax), where, n is the number of tunable
parameters, m is the number of test benchmarks, T is
the exhaustive search threshold factor and Lmax is the
size of the largest set of possible settings for the tunable
parameters considered. Since T is larger than n, m and
Lmax, the computational complexity of our methodology
can be simplified as O(mT ). This complexity reveals that
the operation time of our proposed methodology depends
on the exhaustive search limiting factor provided by the
system designer.

5 EXPERIMENTAL SETUP

All the design configuration simulations for evaluating our
parameter optimization algorithm were carried out on the
ESESC [14] simulator. ESESC is a fast cycle-accurate chip
multiprocessor simulator which models out-of-order RISC
(Reduced Instruction Set Computing) processors running
ARM instruction set. It produces performance, power and
thermal models of chip multi-processors. It also has the
ability to run unmodified ARM-binaries.

The test benchmarks used in our evaluation are from
the PARSEC and SPLASH-2 [15] [16] [17] Benchmark
suite. The PARSEC and SPLASH-2 benchmark suite is
a collection of standardized multi-threaded benchmarks
used for evaluating chip-multiprocessors. Unlike high
performance computing (HPC) focused benchmark suites,
the benchmarks included in this suite are representative
of a diverse application space. These benchmarks model
emerging workloads which are likely to find important
applications in the near future.

The algorithm steps were implemented using Perl [18].
The results from each of the simulations carried out were
gathered in MS Excel using the tool Excel-Writer-XLSX [19]
for Perl. The ARM-binaries for all the test benchmarks were
compiled using arm-linux-gnueabihf toolchain [20].

TABLE 1
List of Tunable Parameters and Settings

Parameter Name Set of Settings
Design Space

Small Large

Cores (PARSEC) 2, 4, 8 X X

Cores (SPLASH-2) 2, 4 X X

Frequency (MHz) 1700, 2200, 2800, 3200 X X

L1-I Cache Size (kB) 8, 16, 32, 64, 128 X X

L1-D Cache Size (kB) 8, 16, 32, 64, 128 X X

L2 Cache Size (kB) 256, 512, 1024 X X

L3 Cache Size (kB) 2048, 4096, 8192 X X

Fetch/Issue/Retire
2, 4, 8, 16 X

Width (B)

Reorder Buffer Size (B) 32, 64, 128, 256 X

Branch Prediction BPredX, BPredX2 X

We tested our parameter optimization methodology for
different design space sizes: small and large. The smaller
design space contains six tunable parameters while the
larger design space contains nine. Table 1 contains the list
of tunable parameters considered in making up the design
space along with the set possible setting values for each of
the parameters. Based on the number of settings for each
of the tunable parameters the design space cardinalities for
PARSEC benchmarks is 2,700 design points for the smaller
design space and 86,400 for the larger design space. For
SPLASH-2 benchmarks, the design space cardinality of the
smaller design space is 1,800 and for the larger design space
is 57,600.

We used the following benchmarks from the PARSEC
and SPLASH-2 suites to test our algorithm:

PARSEC Benchmarks: Blackscholes, Canneal, Facesim,
Fluidanimate, Freqmine, Streamcluster, Swaptions, x264

SPLASH-2 Benchmarks: Cholesky, FFT, LU-cb, LU-ncb,
Ocean-cp, Ocean-ncp, Radiosity, Radix, Raytrace
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Fig. 2. Categorization of trade-off solutions in Pareto Front [21].

We define two sample application domains which we
use to evaluate our methodology: a low-power application
domain and a high-performance application domain. In
order to model the requirements of these domains, we
choose power and performance as the design metrics.
The total dynamic power and leakage power across all
the cores of the multicore/manycore system makes up
the power metric and the total execution time makes
up the performance metric. The power and performance
of multicore systems are known to have conflicting
interdependency i.e. it is not possible to find a configuration
point in the design space which yields minimum values for
both power and performance. So, only trade-off solutions
are possible for these metrics. The trade-off solutions for
these metrics fall into two categories - low-power or high-
performance (low execution time) (shown in Figure 2).

Out of the trade-off solutions, one of the solutions has to
be selected for the design. Intuitively, selecting the solution
at extreme minimum values of the design metrics should be
ideal. This is not the case because a solution that has the
lowest power value has very high execution time and the
solution having lowest execution time has very high power



9

TABLE 2
Weight Factors for Design Metrics

Configuration Power Performance

Low Power 0.9 0.1

High Performance 0.1 0.9

due to conflicting interdependency of the metrics. So, the
best solution is the one in which the principle design metric
for the application specification is close to the minimum
value while the other metrics are within acceptable ranges.
This balance is introduced by applying suitable weights
to the design metrics to form an objective function which
quantifies the effect of each metric on the target design.
The selected trade-off solution is one which yields minimum
value for the objective function.

The weight assigned to the design metrics for the
application domains we consider are presented in Table 2.
The linear objective function we formed for our evaluation
tests is the weighted sum of design metrics:

F = wP · P + wE · E (15)

where,

P = Dynamic Power + Leaked Power

E = Total Execution T ime
(16)

where, wP and wE denote weight factors for power and
performance metrics, respectively.

6 RESULTS

In this section, we present the results that we obtained
from our methodology. This section is divided into
two subsections. In the first subsection, we present the
evaluation of results obtained from our methodology on
the smaller design space - six parameters. We further
compare our results with the results obtained from a fully
exhaustive search of the smaller design space. In the second
subsection, we present the evaluation of the results obtained
from our methodology on the larger design space. We
also compare the results using different exhaustive search
threshold factors (T ) and the effect of these threshold factors
on solution quality and design time.

6.1 Evaluation Results for Smaller Design Space

For the smaller design space, we verified our methodology
by comparing our results with the results obtained from
fully exhaustive search. We execute our methodology with
an arbitrary exhaustive search threshold factor of 150 (i.e.,
T = 150). We clarify that the threshold factor of T = 150
means that the maximum number of design configurations
that can be explored by exhaustive search (Algorithm 3) in
our methodology is upper bounded by 150.

6.1.1 Parameter Significance

Figure 3 presents the values of parameter significance
obtained for various PARSEC benchmarks for both low-
power and high-performance requirements. These values
were calculated based on normalized values of the
simulation results obtained from the initial (one-shot)
optimization phase of our methodology. Total power and

execution time values are normalized using the maximum
total power and maximum execution time values obtained
in the initial (one-shot) optimization phase. All total power
and execution time values throughout the remaining phases
of the methodology are normalized using these maximum
values. Figure 3 reveals that for each test benchmark, there
are at most three tunable parameters which have a high
significance on the objective function. We observe that for
low-power requirements, number of cores followed by the
core frequency are the parameters that have significant
impact on the objective function. For high-performance
requirements, cache sizes (in particular L1-D and L2 cache
sizes) also impact the objective function as the larger
cache sizes can accommodate more recently used data and
help mitigate cache thrashing, which provides performance
improvement. This observation is intuitive because the
PARSEC benchmarks are highly data-parallel (and hence
performance improvement with an increase in number of
cores) and have medium to large working sets (and hence
performance improvement with an increase in cache size).

6.1.2 Pareto Fronts

Figure 4 presents the Pareto fronts obtained for various
PARSEC benchmarks for both low-power and high-
performance requirements. The Pareto fronts, which are
generated using the normalized values of total power and
execution time clearly show the conflicting interdependency
between these design metrics considered, i.e., increasing
total power decreases execution time and vice versa. Hence,
it is not possible to have a single solution to the optimization
problem which gives minimum values for both these
metrics. A favorable trade-off solution between power and
performance is the only result that can be obtained from
the optimization process. Each of the points on the Pareto
front represents a favorable trade-off solution between the
conflicting power and performance metrics.

6.1.3 Selecting a favorable tradeoff solution

Figure 5 illustrates how a favorable trade-off solution is
selected from the set of Pareto-optimal trade-off points on
the Pareto front. The objective function forms a straight line
in the power-performance graph with the slope −wP/wE ,
where wP and wE are the weights associated with the
total power and execution time design metrics, respectively.
These weights indicate the preference/weightage of design
metrics with respect to each other. This is seen in the
objective function line having a smaller intercept on the
horizontal axis (Total Power) for low-power requirement
and having a smaller intercept on the vertical axis
(Execution Time) for high-performance requirement.

Figure 5a reveals that for low-power requirements,
the power-performance pair of the form (Total Power
(W), Execution Time (ms)), obtained from the point of
intersection of the objective line with the Pareto front
is (0.904, 68.614). The weight-balanced results obtained
from the fully exhaustive search is (0.909, 65.321). This
results in a difference of -0.55% for the total power results
and 4.79% for the execution-time/performance results. The
configurations yielding these power-performance pairs for
our methodology and the fully exhaustive search both have
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Fig. 3. Significance of Tunable parameters for PARSEC Benchmarks for small design space.

2 cores and 1700 MHz frequency. The configurations differ
slightly on the cache sizes.

Similarly, from Figure 5b, the point of intersection of
the objective line with the Pareto front for the high-
performance requirements case is (1.597, 35.142) and the
weight-balanced results obtained from the fully exhaustive
search is (1.6, 34.152). This results in a difference of -0.19%
for the total power results and 2.82% for the execution-
time/performance results. Both configurations have 2 cores
and 3200 MHz frequency and differ is cache sizes.

Results indicate that our methodology attains results
that are consistent with the results obtained from
fully exhaustive search results while only exploring 52
configurations (i.e., 1.92% of the design space) for low-
power requirement; and 77 configurations (i.e., 2.85% of
the design space), for high-performance requirement. These
results verify that our proposed methodology explores
the design space of multicore/manycore processors in
a highly efficient manner. Also, the cores count and
operating frequency values were determined to be the most
significant parameters in the initial (one-shot) phase of our
methodology for both low-power and high-performance
requirements and hence, were included in the exhaustive

search set. Thus, we were able to match these value exactly
with the values obtained from the fully exhaustive search.

6.1.4 Comparison with Exhaustive Search
To verify the solution quality (design configuration)
obtained by our methodology, we compare the results
obtained from our methodology with the results obtained
from fully exhaustive search for the given application
requirements. Table 3 lists details of the design configuration
selected by our methodology alongside the one obtained
from fully exhaustive search for Blackscholes (PARSEC) test
benchmark. The boldface values in the table are parameters
settings obtained from fully exhaustive search and the
values adjacent to these boldface values are parameter
settings obtained from our methodology. Table 3 also
presents the power-performance values for configurations
obtained from fully exhaustive search as well as from
our methodology. We observe that for high-performance
requirement, our methodology provides a trade-off solution
with execution-time/performance within -0.05% and total
power within 5.27% of the solution obtained from fully
exhaustive search. We also note that the configuration
obtained for high-performance requirement has a higher
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Fig. 4. Pareto fronts for PARSEC Benchmarks for small design space with exhaustive search threshold of T = 150 [total power and execution time
values are normalized].
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Fig. 5. Linear objective function plotted along with the Pareto front for the x264 (PARSEC) benchmark [total power and execution time values are
normalized].

TABLE 3
Comparison of settings for Blackscholes (PARSEC) Benchmark.

High Performance Low Power
EXH DSE EXH DSE

Cores 8 8 2 2

Frequency 3200 3200 1700 1700

L1-I Cache Size 64 64 8 16

L1-D Cache Size 32 128 16 16

L2 Cache Size 512 256 512 1024

L3 Cache Size 4096 8192 8192 8192

Total Power [W] 4.309 4.549 0.658 0.660

Execution Time [ms] 28.153 28.139 144.625 144.809

EXH - Exhaustive search,
DSE - Proposed design space exploration methodology

core count (i.e., 8 cores) and a higher operating frequency
(i.e., 3200 MHz) as compared to the configuration
obtained for low-power requirement (i.e., core count of
2 and the operating frequency of 1700 MHz). For low-
power requirement, our methodology provides a trade-
off solution with total power within 0.3% and execution
time/performance within 0.12% of the solution obtained
from fully exhaustive search. These configuration settings
can be explained intuitively. Having a large number of
cores working at high frequencies favours high performance
whereas having fewer cores operating at low frequencies
result in reduced power consumption.

On average, our methodology attains power values
within 1.35% for low-power requirement and the
performance values within 3.69% for high-performance
requirement as compared to fully exhaustive search. Our
methodology explores 593 configurations in total for
all PARSEC test benchmarks (Section 5) for low-power
requirement, and 648 configurations in total for high-
performance requirement. The average percentage of the
design space explored by our methodology is within 2.74%–
3%. Hence, our methodology provides a speedup of 35.32×
as compared to fully exhaustive search exploration of
the design space. These evaluation results verify that our
methodology explores the design space in a highly efficient
manner.

6.1.5 Comparison with PLATUNE design space exploration
methodology

The PLATUNE design space exploration methodology is
an efficient exploration technique useful for discovering
Pareto-optimal configurations. The worst-case running time

for this methodology is bounded by O(K ×M
N
K ), where

K denotes the number of strongly connected components
in clusters, N denotes the number of parameters and M
denotes the upper bound on the number of possible settings
for each parameter [7]. In the best case, when K = N ,
the running time of their methodology is linear, O(N). In
comparison, the running time of our methodology is always
linear, O(mT ) and strictly depends on the exhaustive
search limiting factor provided by the system designer.
Furthermore, comparing to results reported for PLATUNE
in [7] and [13], we observe that our methodology is accurate
to within 4% of results fully exhaustive search exploring
less than 3% of the design space whereas their methodology
is accurate to within 8% of gate-level simulation exploring
around 0.2% of the design space.

6.2 Evaluation Results for Larger Design Space

For the larger search space, we evaluate our methodology by
comparing the results (design configurations) obtained by
varying the exhaustive search threshold between two values
– T = 400 and T = 1,200. Here, we present a side-by-side
comparison of the power-performance values and design
configurations (tunable parameter settings) obtained from
these two exhaustive search threshold values.

6.2.1 Parameter Significance

Figure 7 shows the normalized values of parameter
significance for the SPLASH-2 test benchmarks for high
performance requirements. As per intuition, we find that
the operating frequency is the most significant parameter
out of all the tunable parameters considered performance
improvement is the desired design goal. This is consistent
with the results obtained for the smaller design space.
The second most significant parameter in case of the
smaller design space is the cores count, but, with the
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Fig. 6. Comparison of Pareto Fronts for exhaustive search threshold values T = 400 and T = 1,200 for SPLASH-2 test benchmarks [total power and
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Fig. 7. Significance of tunable parameters for high performance
requirement for SPLASH-2 benchmarks on the larger design space.

addition of new tunable parameters - fetch/issue/retire
width, reorder buffer size and branch prediction, we find
that this is no longer the case. Although, cores count does
remain a significant parameter, reorder buffer size takes
its place as the second most significant parameter after
operating frequency. This is expected because the size of
the reorder buffer directly relates to performance, as a
higher reorder buffer size allows more instructions to be
executed out of order which increases instruction level
parallelism [22] and hence increases performance. For most
benchmarks, we observe that the fetch/issue/retire width
is the third most significant parameter. We note that a
higher fetch/issue/retire width also increases instruction
level parallelism which results in performance improvement
[23].

6.2.2 Pareto Fronts
Figure 6 shows the Pareto fronts for the different exhaustive
search threshold values plotted one over the other for the
test benchmarks Ocean cp and Radix. From these Pareto
fronts, we observe that for higher value of the exhaustive
search threshold, the approximation of the Pareto front is
better as compared to lower value of exhaustive search

TABLE 4
Comparison of settings for SPLASH-2 Benchmark for T = 400 and T =

1,200 for High Performance Requirement

Ocean cp Radix
T = 400 T = 1,200 T = 400 T = 1,200

Cores 2 2 4 4

Frequency 3200 3200 3200 3200

L1-I Cache Size 8 128 8 128

L1-D Cache Size 32 128 64 16

L2 Cache Size 1024 512 1024 512

L3 Cache Size 4096 8192 8192 8192

FIR Width 16 4 2 2

ROB Size 256 256 64 64

Branch Prediction x2 x2 x2 x

Total Power [W] 2.622 2.312 2.137 1.798

Execution Time [ms] 74.126 66.096 7.264 7.245

threshold. We note that although the Pareto fronts are
significantly different, the design configurations (tunable
parameter settings) obtained from our methodology for the
different threshold values are fairly consistent.

Table 4 presents a side by side comparison of the
configurations obtained from our methodology for different
values of exhaustive search threshold, T . The boldface
values in the tables are the parameter settings obtained from
our methodology with T = 400 and the values adjacent
to these boldface values are the settings obtained from our
methodology with T = 1, 200. We observe that the values
obtained using these different exhaustive search threshold
values are highly consistent. The significant parameters -
operating frequency, reorder buffer size, fetch/issue/retire
width and cores count are mostly similar in the results
(design configurations) obtained using these two exhaustive
search threshold values.

The power-performance values for the results (design
configurations) obtained from our methodology for the
different threshold values are also presented in Table 4.
Before comparing these values, we note that the maximum
and average execution times (maximum, average) in ms
obtained for all configurations simulated for Ocean cp
benchmark are (305.84, 149.47) and the same for Radix
benchmark are (46.62, 21.25). The execution time values
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obtained for results (design configuration) obtained for T =
400 for the Ocean cp benchmark and Radix benchmarks
are 74.126 ms and 7.264 ms respectively. The execution
time values obtained for the same benchmarks with T =
1, 200 are 66.096 ms and 7.254 ms respectively. Comparing
these values to the maximum and average execution times
obtained for all design configurations simulated for these
benchmarks, we observe that our methodology determines
design configurations with significantly smaller values of
execution time (and hence higher performance).

We also note that there is much improvement in
the results when using a higher threshold value. From
Table 4 we see that increasing the threshold value
from 400 configurations to 1,200 configurations yields an
improvement in power and performance by -73.18% and
-10.83%, respectively, for the Ocean cp benchmark and by -
15.86% and -0.26%, respectively, for the Radix benchmark.
This improvement can be explained by the Pareto fronts
presented in Figure 6. This is also evident from Figure 6
shows that the approximation of the Pareto front is better
when a higher value is used as threshold for exhaustive
search. This conforms with the observation presented by
Silvano et al. [9].

The number of design configurations explored to obtain
the results presented in Table 4 are 122 and 154 for Ocean cp
and Radix benchmarks, respectively, for threshold T = 400.
The same for threshold T = 1, 200 are 598 configurations
for Ocean cp and 662 for Radix benchmark. This translates
to 0.15% of the design space for threshold value T = 400
and 0.72% for threshold value T = 1, 200. From these
results, it is evident that our methodology determines
design configurations which yield significantly better values
for design metrics by exploring a very small portion of
the design space. Thus, our methodology is a reliable and
efficient alternative for design space exploration.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a four-step methodology for
efficient design space exploration and tunable parameters
optimization for multicore/manycore architectures. The
first phase determined good initial settings (within 51.26%
of the best setting) for each of the tunable parameters before
beginning the search process. The second phase consisted
of an intelligent set partitioning algorithm which separated
the parameters into different ordered sets based on the
significance of the parameters with respect to the objective
function and the exhaustive search threshold factor supplied
by the system designer. The third and fourth steps consisted
of exploring the subsets obtained from the second phase by
exhaustive search and greedy search, respectively.

To verify our methodology, we tested it on both
small and large processor design spaces. For the smaller
design space, containing six tunable parameters, we
compared the results (design configurations) obtained from
our methodology with the results obtained from fully
exhaustive search. The results reveal that our methodology
provided results with quality within 1.35% to 3.69% of
the result quality obtained from fully exhaustive search,
while only exploring 2.74% - 3% of the design space on
average, resulting in a speedup of 35.32× as compared
to fully exhaustive search. For the larger design space,

containing nine tunable parameters, we compared the
results (design configurations) obtained by varying the
exhaustive search threshold between two values, T = 400
and T = 1, 200. We observed that the design configurations
obtained for both these exhaustive threshold values were
highly consistent and were significantly better than the
average of all other design configurations simulated. Our
evaluation also revealed that the approximation of the
Pareto front is better for T = 1, 200 as compared to
the same for T = 400. This shows that including more
number of tunable parameters in the exhaustive search
phase of our methodology greatly improves the solution
quality, which is consistent with findings of Silvano et al. [9].
Also, our methodology determined results for the specified
application requirements by exploring only 0.15% - 0.72% of
the larger processor design space. These results verified that
out methodology explores the design space efficiently and
provides high solution quality.

In the future, we hope to improve on our algorithm by
developing a better method for initial one-shot parameter
optimization. We intend to investigate full-factorial design
method to improve on this step. We plan to improve the
set partitioning algorithm by using a better cut-off value
for set partition instead of using the exhaustive search
threshold value that we are currently using. Another future
goal is to perform comparisons of our methodology against
other forms of parameter optimizations using genetic-
evolutionary algorithms and machine-learning algorithms.
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